■サマーヴィルの等面四面体(その150)
△6について
P0(4/√12, 0 ,0, 0,7/√42,7/√14)
P1( 0, 0, 0, 0, 0, 0)
P2(3/√12,7/√28,7/√14, 0, 0, 0)
P3(6/√12,14/√28, 0, 0, 0, 0)
P4(9/√12,7/√28, 0,7/√14, 0, 0)
P5(12/√12, 0 ,0, 0, 0, 0)
P6(8/√12, 0 ,0, 0,14/√42, 0)
G(6/√12, 4/√28,1/√14,1/√14,3/√42,1/√14)
超平面をax+by+cz+dw+ev+fu=gとする.
===================================
[1]P1P2P3P4P5P6平面:u=0
[2]P0P2P3P4P5P6平面:
(1,√(6/14),√(12/14),0,√(4/14),√(12/14)),g=12/√12
[3]P0P1P3P4P5P6平面:g=0,z=0
[4]P0P1P2P4P5P6平面:g=0
(0,1,−1/√2,−1/√2,0,0),g=0
[5]P0P1P2P3P5P6平面:g=0,w=0
[6]P0P1P2P3P4P6平面:g=0
(1,−√(6/14),0,−√(12/14),−√(16/14),0),g=0
[7]P0P1P2P3P4P5平面:g=0
(0,0,0,0,1,−1/√3),g=0
===================================