■サマーヴィルの等面四面体(その110)
最長辺の場合,
[1]nが奇数のとき,
j=(n+1)/2→L^2=j(n+1−j)=(n+1)^2/4
[2]nが偶数のとき,
j=n/2
L^2=j(n+1−j)=n(n+2)/4
===================================
d^2=L^2−H^2
[1]nが奇数のとき,
d^2=(n+1)^2/4−(n+1)/2=(n+1)(n−2)/4
=(n^2−1)/4
[2]nが偶数のとき,
d^2=n(n+2)/4−(n+1)/2
=(n^2+n−1)/4
===================================
R^2=d^2+r^2,r^2=(H/(n+1))^2
[1]nが奇数のとき,
R^2=(n^2−1)/4+1/2(n+1)
={(n^2−1)(n+1)+2}/4(n+1)
n=3のとき,34/20 (NG)
[2]nが偶数のとき,
R^2=(n^2+n−1)/4+1/2(n+1)
={(n^2+n−1)(n+1)+2}/4(n+1)
===================================