■サマーヴィルの等面四面体(その110)

 最長辺の場合,

[1]nが奇数のとき,

  j=(n+1)/2→L^2=j(n+1−j)=(n+1)^2/4

[2]nが偶数のとき,

  j=n/2

  L^2=j(n+1−j)=n(n+2)/4

===================================

  d^2=L^2−H^2

[1]nが奇数のとき,

  d^2=(n+1)^2/4−(n+1)/2=(n+1)(n−2)/4

=(n^2−1)/4

[2]nが偶数のとき,

  d^2=n(n+2)/4−(n+1)/2

=(n^2+n−1)/4

===================================

  R^2=d^2+r^2,r^2=(H/(n+1))^2

[1]nが奇数のとき,

  R^2=(n^2−1)/4+1/2(n+1)

={(n^2−1)(n+1)+2}/4(n+1)

 n=3のとき,34/20  (NG)

[2]nが偶数のとき,

  R^2=(n^2+n−1)/4+1/2(n+1)

={(n^2+n−1)(n+1)+2}/4(n+1)

===================================