■ピザの公平な分け方(その16)

[1]2∫cos2(θ-α)dθ=sin2(θ-α)

a=sin2(π/8-α)+sin2α

b=sin2(π/4-α)-sin2(π/8-α)

c=sin2(3π/8-α)-sin2(π/4-α)

d=sin2(π/2-α)-sin2(3π/8-α)

e=sin2(5π/8-α)-sin2(π/2-α)

f=sin2(3π/4-α)-sin2(5π/8-α)

g=sin2(7π/8-α)-sin2(3π/4-α)

h=sin2(π-α)-sin2(7π/8-α)

i=sin2(9π/8-α)-sin2(π-α)

j=sin2(5π/4-α)-sin2(9π/8-α)

k=sin2(11π/8-α)-sin2(5π/4-α)

l=sin2(3π/2-α)-sin2(11π/8-α)

m=sin2(13π/8-α)-sin2(3π/2-α)

n=sin2(7π/4-α)-sin2(13π/8-α)

o=sin2(15π/8-α)-sin2(7π/4-α)

p=sin2(2π-α)-sin2(15π/4-α)

===================================