■ピザの公平な分け方(その12)
ピザ分割問題では45°8ピースになっているが,90°4ピースではNGであることはすぐにわかる.それでは60°6ピースとか30°12ピースではいけないのだろうか?
60°6ピースの場合について,確かめてみよう.
a=1/2・∫(0,π/3)r^2dθ
b=1/2・∫(π/3,2π/3)r^2dθ
c=1/2・∫(2π/3,π)r^2dθ
d=1/2・∫(π,4π/3)r^2dθ
e=1/2・∫(4π/3,5π/3)r^2dθ
f=1/2・∫(5π/3,2π)r^2dθ
===================================
[3]∫cos(θ−α){R^2−(sin(θ−α))^2}^1/2dθ
=R/2・sin(θ−α){1−(sin(θ−α)/R)^2}^1/2+2R^2・arcsin(sin(θ−α)/R)の
arcsin(sin(θ−α)/R)
a=arcsin(sin(π/3−α)/R)−arcsin(−sinα/R)
b=arcsin(sin(2π/3−α)−arcsin(sin(π/3−α)/R)
c=arcsin(sinα/R)−arcsin(sin(2π/3−α)/R)
d=arcsin(−sin(π/3−α)/R)−arcsin(sinα/R)
e=arcsin(−sin(2π/3−α)/R)−arcsin(−sin(π/3−α)/R)
f=arcsin(−sinα/R)−arcsin(−sin(2π/3−α)/R)
a=arcsin(sin(π/3−α)/R)+arcsin(sinα/R)
c=arcsin(sinα/R)−arcsin(sin(2π/3−α)/R)
e=−arcsin(sin(2π/3−α)/R)+arcsin(sin(π/3−α)/R)
a+c+e=2arcsin(sinα/R)+arcsin(sin(π/3−α)/R)−arcsin(sin(2π/3−α)/R)
b=arcsin(sin(2π/3−α)−arcsin(sin(π/3−α)/R)
d=−arcsin(sin(π/3−α)/R)−arcsin(sinα/R)
f=−arcsin(sinα/R)+arcsin(sin(2π/3−α)/R)
b+d+f=−2arcsin(sinα/R)−2arcsin(sin(π/3−α)/R)+2arcsin(sin(2π/3−α)/R)
a+c+e=−(b+d+f)
a+c+e=b+d+fは成り立たない.
3人で分けるなら,
a+d=0,b+e=0,c+f=0
が成り立つが,[1]では成立しないと思う.
===================================