■ピザの公平な分け方(その12)

 ピザ分割問題では45°8ピースになっているが,90°4ピースではNGであることはすぐにわかる.それでは60°6ピースとか30°12ピースではいけないのだろうか?

 60°6ピースの場合について,確かめてみよう.

  a=1/2・∫(0,π/3)r^2dθ

  b=1/2・∫(π/3,2π/3)r^2dθ

  c=1/2・∫(2π/3,π)r^2dθ

  d=1/2・∫(π,4π/3)r^2dθ

  e=1/2・∫(4π/3,5π/3)r^2dθ

  f=1/2・∫(5π/3,2π)r^2dθ

===================================

[3]∫cos(θ-α){R^2-(sin(θ-α))^2}^1/2dθ

=R/2・sin(θ-α){1-(sin(θ-α)/R)^2}^1/2+2R^2・arcsin(sin(θ-α)/R)の

arcsin(sin(θ-α)/R)

a=arcsin(sin(π/3-α)/R)-arcsin(-sinα/R)

b=arcsin(sin(2π/3-α)-arcsin(sin(π/3-α)/R)

c=arcsin(sinα/R)-arcsin(sin(2π/3-α)/R)

d=arcsin(-sin(π/3-α)/R)-arcsin(sinα/R)

e=arcsin(-sin(2π/3-α)/R)-arcsin(-sin(π/3-α)/R)

f=arcsin(-sinα/R)-arcsin(-sin(2π/3-α)/R)

a=arcsin(sin(π/3-α)/R)+arcsin(sinα/R)

c=arcsin(sinα/R)-arcsin(sin(2π/3-α)/R)

e=-arcsin(sin(2π/3-α)/R)+arcsin(sin(π/3-α)/R)

a+c+e=2arcsin(sinα/R)+arcsin(sin(π/3-α)/R)-arcsin(sin(2π/3-α)/R)

b=arcsin(sin(2π/3-α)-arcsin(sin(π/3-α)/R)

d=-arcsin(sin(π/3-α)/R)-arcsin(sinα/R)

f=-arcsin(sinα/R)+arcsin(sin(2π/3-α)/R)

b+d+f=-2arcsin(sinα/R)-2arcsin(sin(π/3-α)/R)+2arcsin(sin(2π/3-α)/R)

  a+c+e=-(b+d+f)

  a+c+e=b+d+fは成り立たない.

3人で分けるなら,

  a+d=0,b+e=0,c+f=0

が成り立つが,[1]では成立しないと思う.

===================================