■ピザの公平な分け方(その10)

[3]∫cos(θ-α){R^2-(sin(θ-α))^2}^1/2dθ

=R/2・sin(θ-α){1-(sin(θ-α)/R)^2}^1/2+2R^2・arcsin(sin(θ-α)/R)の

arcsin(sin(θ-α)/R)

a=arcsin(sin(π/4-α)/R)-arcsin(-sinα/R)

b=arcsin(cosα/R)-arcsin(sin(π/4-α)/R)

c=arcsin(cos(π/4-α)/R)-arcsin(cosα/R)

d=arcsin(sinα/R)-arcsin(cos(π/4-α)/R)

e=arcsin(-sin(π/4-α)/R)-arcsin(sinα/R)

f=arcsin(-cosα/R)-arcsin(-sin(π/4-α)/R)

g=arcsin(-cos(π/4-α)/R)-arcsin(-cosα/R)

h=arcsin(-sinα/R)-arcsin(-cos(π/4-α)/R)

  a+c+e+g=b+d+f+h=0が成り立つ.

  a+e=0,c+g=0,b+f=0,d+h=0

===================================

[まとめ]r^2=cos2(θ-α)+R^2-{4R^2(cos(θ-α))^2-(sin2(θ-α))^2}^1/2

以上より,1/2・πR^2/4・8=πR^2だけが残りことになる.

===================================