■ピザの公平な分け方(その4)
y=zcos(θ−α)
dy/dθ=−zsin(θ−α)
とおく.
z^2−y^2=(zsin(θ−α))^2
r^2=2y^2+1−z^2−2y{y^2+1−z^2}^1/2
=y^2+1−(zsin(θ−α))^2−2y{1−(zsin(θ−α))^2}^1/2
r^2dθ=y^2+1−(zsin(θ−α))^2−2y{1−(zsin(θ−α))^2}^1/2・dy/zsin(θ−α)
=(y^2+1)/zsin(θ−α)−zsin(θ−α)−2y{1/(zsin(θ−α))^2−1}^1/2・dy
簡単な形にはならない.
===================================