■オイラー積(その19)
mが小さいとき,偶数次元では
−ζ’(−m)
奇数次元では
定数−ζ’(−m)
>は確認できておりましたが,mが大きくなったときもこのように表されるかについては何ともいえません.しかし,このことは正しいことがわかりました.大きな進展です.
なお,リーマン予想の3つの同値な言い換えとして,
[1]コッホの結果(1901年)より,リーマン予想=「nとn+k√nの間に素数はある」ですが,
π(x)=Li(x)+O(x^1/2logx)
|π(x)−Li(x)|≦C・x^1/2logx
Li(x)=∫(2,x)dt/logt
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[2]ラガリアスの同値条件(2002年)
nの約数の和をσ(n)で表すと,リーマン予想は
σ(n)≦Hn+logHnexpHn
がn≧1に対して成立すると等価です.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[3]ロバンの同値条件(1984年)
オイラーの定数γを用いると,リーマン予想は
σ(n)<expγnloglogn
がn>5040に対して成立すると等価です.
[2][3]は初等的な条件になっていて,さらに
Am=B(m+1)Hm/(m+1)-ζ’(-m)
にも調和級数のn次部分和
Hn =1/1+1/2+1/3+1/4+・・・+1/n
が関わっているのを見ると,リーマン予想との関係が想起されます.
===================================