■サマーヴィルの等面四面体(その26)
(その24)(その25)の続き.
Dii=0,Dij=Dji=dij^2=(j−i)(n+1+i−j),i<j
Dix=ΣDij
α^2A=|D00,D01,D02,D03,α|
|D10,D11,D12,D13,α|
|D20,D21,D22,D23,α|
|D30,D31,D32,D33,α|
| α, α, α, α,0|
まず,第1行を他の行から引いて
|D00,D01 ,D02 ,D03 ,α|
|D10,D11−D01,D12−D02,D13−D03,0|
|D20,D21−D01,D22−D02,D23−D03,0|
|D30,D31−D01,D32−D02,D33−D03,0|
| α, α−D01, α−D02, α−D03,−α|
さらに第2列〜第n列を第1列に加えれば
|D00+D0x+ α,D01 ,D02 ,D03 ,α|
|D10+D1x−D0x,D11−D01,D12−D02,D13−D03,0|
|D20+D2x−D0x,D21−D01,D22−D02,D23−D03,0|
|D30+D3x−D0x,D31−D01,D32−D02,D33−D03,0|
| 3α−D0x, α−D01, α−D02, α−D03,−α|
D00+D0x=D0x,D10+D1x=D0x,D20+D2x=D0x,D30+D3x=D0xα=D0x/3とおけば
−α^2|D11−D01,D12−D02,D13−D03|
|D21−D01,D22−D02,D23−D03|
|D31−D01,D32−D02,D33−D03|
E33=−D03+(D13−D03)(D31−D01)/D01
−α^2|D11−D01,D12−D02,0|
|D21−D01,D22−D02,D23−D03|
| 0,D32−D02,E33|
E22=−D02+(D12−D02)(D21−D01)/D01=−D02
Dij=Dji=dij^2=(j−i)(n+1+i−j),i<jより,(D12−D02)(D21−D01)=0
−α^2|D11−D01,0,0|
| 0,E22,D23−D03|
| 0,D32−D02,E33|
F33=E33−(D23−D03)(D32−D02)/E22
α^2|D01,0,0|
|0,E22,0|
|0,0,F33|
E22F33=E22E33−(D23−D03)(D32−D02)
=−D02{−D03+(D13−D03)(D31−D01)/D01}−(D23−D03)(D32−D02)
D01E22F33
=−D02{−D01D03+(D13−D03)(D31−D01)}−D01(D23−D03)(D32−D02)
=D01D02D03−D02(D13−D03)(D31−D01)−D01(D23−D03)(D32−D02)
===================================
D01=D12=D23
D02=D13
D03=D01
D01E22F33
=−D02{−D01D03+(D13−D03)(D31−D01)}−D01(D23−D03)(D32−D02)
=D01D02D03−D02(D02−D03)(D02−D01)−D01(D01−D03)(D01−D02)
=D01D02D03−D02(D02−D03)(D02−D01)
=D01D02D01−D02(D02−D01)(D02−D01)
=D01^2D02−D02(D02−D01)^2
===================================