■四元数体と3次元の回転(その9)
[5]x=x0+x1i+x2j+x3k,y=y0+y1i+y2j+y3k
xy=(x0y0−x1y1−x2y2−x3y3)
+(x0y1+x1y0+x2y3−x3y2)i
+(x0y2−x1y3+x2y0+x3y1)j
+(x0y3+x1y2−x2y1+x3y0)k
xy=[ x0,−x1,−x2,−x3][y0]
[ x1, x0,−x3, x2][y1]
[ x2, x3, x0,−x1][y2]
[ x3,−x2, x1, x0][y3]
[6]x=x0+x1i+x2j+x3k
x^2=x0^2−x1^2−x2^2−x3^2+2x0(x1i+x2j+x3k)
x0=0のとき,x^2=−x1^2−x2^2−x3^2
[7]x=x0+x1i+x2j+x3kの極形式
x=rexp(μθ)=r{cosθ+μsinθ}
について,
r=|x|=(x0^2+x1^2+x2^2+x3^2)^1/2
θ=arctan((x1^2+x2^2+x3^2)^1/2/x0)
μ=(x1i+x2j+x3k)/(x1^2+x2^2+x3^2)^1/2
===================================