■ラグビーと円周角の定理(その3)
ゴールラインまでのボールの距離をx,2本のゴールポストの間隔をd,近い方のゴールポストまでの距離をyとする.
y(y+d)=x^2→x={y(y+d)}^1/2
すなわち,ボールの位置xはyと(y+d)の幾何平均で与えられる.
yがdに比べて小さいときはx〜yということになるが,これでは大雑把すぎる.
x={y(y+d)}^1/2=y{(1+d/y)}^1/2
〜y(1+d/2y)=y+d/2
すなわち,ボールの位置xは近い方のゴールポストまでの距離に,ゴールポストの間隔の半分を加えた距離で与えられる.x≦yでは不利なのである.
===================================