■サマーヴィルの等面四面体(その6)

 サマーヴィルの等面四面体の空間充填には,いくつかの特徴がみられる.

[1]正三角柱状空間充填

 すなわち,6辺中4辺の方向に「柱状空間充填」を伸長させることができて,いずれの場合もその断面は正三角形となっている.

[2]展開図も柱状平面充填

 3辺中3辺の方向に「柱状平面充填」を伸長させることができる.

 任意の次元に空間充填等面四面体を構成することができたが,[1][2]は高次元の等面単体でも成り立つ性質だろうか?

===================================

 n次元の空間充填等面単体をΔn,そのファセット∂nで表すことにする.

 柱状空間充填の方向は,辺の数(n+1,2)だけあるので,そのすべてを調べつくすことは難しいが,その方向によっては

[1]Δnは,断面がΔn-1である柱状空間充填が可能である.

[2]∂nは,断面が∂n-1である柱状空間充填が可能である.

ことが確かめられた.

 これらは予想されたことではあるが,おもしろい関係である.実際に,柱状空間充填を帰納的に構成することができた.その手順はアルゴリズム化が可能である.

===================================