■ほとんど完全数(その11)
ガウスは1796年の日記に
「わかった! n=△+△+△」
と書いていますが,それはすべての整数は3つの3角数の和によって表しうるという意味です.
ガウスの発見は8n+3の形をしたすべての整数を3つの奇数の平方の和として表せることを意味していて,3平方和定理「8n+7の形の自然数は3つの平方数の和では表せない」を用いると「n=△+△+△」を簡単に示すことができます.
(証明)4^k(8n+7)でない奇数は3平方和で表せますから,任意の自然数nに対して8n+3=x^2+y^2+z^2と書けます.このとき,x=2p+1,y=2q+1,z=2r+1とおくと
n=p(p+1)/2+q(q+1)/2+r(r+1)/2
===================================