■等面単体の体積(その420)

 (その412)の4次元展開図のファセットについては・・・

[4]

  P1P2^2=3m^2+h^2

  P1P3^2=4m^2+4h^2

  P1P4^2=4m^2+4h^2

  P2P3^2=3m^2+h^2

  P2P4^2=3m^2+9h^2

  P3P4^2=16h^2

[5]ここで,

  16h^2=3m^2+h^2=4,h^2=1/4,m^2=5h^2=5/4

  4m^2+4h^2=6

  3m^2+9h^2=6

を満足させることができれば,

  P1P2=P2P3=P3P4=2

  P1P3=P2P4=√6

  P1P4=√6

が成り立っている.

===================================

 (その410)の4次元本体については・・・

[5]

  P0P1^2=16h^2

  P0P2^2=3m^2+9h^2

  P0P3^2=4m^2+4h^2

  P0P4^2=3m^2+h^2

  P1P2^2=3m^2+h^2

  P1P3^2=4m^2+4h^2

  P1P4^2=3m^2+9h^2

  P2P3^2=3m^2+h^2

  P2P4^2=4m^2+4h^2

  P3P4^2=3m^2+h^2

P0を外すと

  P1P2^2=3m^2+h^2

  P1P3^2=4m^2+4h^2

  P1P4^2=3m^2+9h^2

  P2P3^2=3m^2+h^2

  P2P4^2=4m^2+4h^2

  P3P4^2=3m^2+h^2

P1を外すと・・・

P2を外すと・・・

P3を外すと・・・

P4を外すと・・・

  P0P1^2=16h^2

  P0P2^2=3m^2+9h^2

  P0P3^2=4m^2+4h^2

  P1P2^2=3m^2+h^2

  P1P3^2=4m^2+4h^2

  P2P3^2=3m^2+h^2

となって,展開図

  P1P2^2=3m^2+h^2

  P1P3^2=4m^2+4h^2

  P1P4^2=4m^2+4h^2

  P2P3^2=3m^2+h^2

  P2P4^2=3m^2+9h^2

  P3P4^2=16h^2

と同じ構造になる.

[5]ここで,

  16h^2=3m^2+h^2=4,h^2=1/4,m^2=5h^2=5/4

  3m^2+9h^2=6

  4m^2+4h^2=6

を満足させることができれば,

  P0P1=P1P2=P2P3=P3P4=2

  P0P2=P1P3=P2P4=√6

  P0P3=P1P4=√6

  P0P4=2

が成り立っている.

P4を外すと・・・

  P0P1=P1P2=P2P3=2

  P0P2=P1P3=√6

  P0P3=√6

ここで,添字をシフトさせると展開図と同じ構造になる.

===================================