■等面単体の体積(その420)
(その412)の4次元展開図のファセットについては・・・
[4]
P1P2^2=3m^2+h^2
P1P3^2=4m^2+4h^2
P1P4^2=4m^2+4h^2
P2P3^2=3m^2+h^2
P2P4^2=3m^2+9h^2
P3P4^2=16h^2
[5]ここで,
16h^2=3m^2+h^2=4,h^2=1/4,m^2=5h^2=5/4
4m^2+4h^2=6
3m^2+9h^2=6
を満足させることができれば,
P1P2=P2P3=P3P4=2
P1P3=P2P4=√6
P1P4=√6
が成り立っている.
===================================
(その410)の4次元本体については・・・
[5]
P0P1^2=16h^2
P0P2^2=3m^2+9h^2
P0P3^2=4m^2+4h^2
P0P4^2=3m^2+h^2
P1P2^2=3m^2+h^2
P1P3^2=4m^2+4h^2
P1P4^2=3m^2+9h^2
P2P3^2=3m^2+h^2
P2P4^2=4m^2+4h^2
P3P4^2=3m^2+h^2
P0を外すと
P1P2^2=3m^2+h^2
P1P3^2=4m^2+4h^2
P1P4^2=3m^2+9h^2
P2P3^2=3m^2+h^2
P2P4^2=4m^2+4h^2
P3P4^2=3m^2+h^2
P1を外すと・・・
P2を外すと・・・
P3を外すと・・・
P4を外すと・・・
P0P1^2=16h^2
P0P2^2=3m^2+9h^2
P0P3^2=4m^2+4h^2
P1P2^2=3m^2+h^2
P1P3^2=4m^2+4h^2
P2P3^2=3m^2+h^2
となって,展開図
P1P2^2=3m^2+h^2
P1P3^2=4m^2+4h^2
P1P4^2=4m^2+4h^2
P2P3^2=3m^2+h^2
P2P4^2=3m^2+9h^2
P3P4^2=16h^2
と同じ構造になる.
[5]ここで,
16h^2=3m^2+h^2=4,h^2=1/4,m^2=5h^2=5/4
3m^2+9h^2=6
4m^2+4h^2=6
を満足させることができれば,
P0P1=P1P2=P2P3=P3P4=2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0P4=2
が成り立っている.
P4を外すと・・・
P0P1=P1P2=P2P3=2
P0P2=P1P3=√6
P0P3=√6
ここで,添字をシフトさせると展開図と同じ構造になる.
===================================