■等面単体の体積(その391)

  P0(0,0,0,h)

  P1(m,m√2,0,0)

  P2(m,m√2,0,3h)

  P3(2m,0,0,2h)

とおくと

  P0P1^2=3m^2+h^2

  P0P2^2=3m^2+4h^2

  P0P3^2=4m^2+4h^2

  P1P2^2=9h^2

  P1P3^2=3m^2+4h^2

  P2P3^2=3m^2+h^2

3m^2+h^2(2)<3m^2+4h^2(2)<4m^2+4h^2(1)

9h^2(1)→NG

===================================

  P0(0,0,0,2h)

  P1(m,m√2,0,0)

  P2(m,m√2,0,3h)

  P3(2m,0,0,h)

とおくと

  P0P1^2=3m^2+4h^2

  P0P2^2=3m^2+h^2

  P0P3^2=4m^2+h^2

  P1P2^2=9h^2

  P1P3^2=3m^2+h^2

  P2P3^2=3m^2+4h^2

4m^2+h^2(1)

   V

3m^2+h^2(2)<3m^2+4h^2(2)

9h^2(1)

 n=4の展開図は

  P1P2=P2P3=P3P4=2

  P1P3=P2P4=√6

  P1P4=√6

であるから,

  3m^2+h^2=9h^2=4→h^2=4/9,m^2=32/27

  4m^2+h^2=3m^2+4h^2=6

は満たされない(NG).

===================================