■等面単体の体積(その391)
P0(0,0,0,h)
P1(m,m√2,0,0)
P2(m,m√2,0,3h)
P3(2m,0,0,2h)
とおくと
P0P1^2=3m^2+h^2
P0P2^2=3m^2+4h^2
P0P3^2=4m^2+4h^2
P1P2^2=9h^2
P1P3^2=3m^2+4h^2
P2P3^2=3m^2+h^2
3m^2+h^2(2)<3m^2+4h^2(2)<4m^2+4h^2(1)
9h^2(1)→NG
===================================
P0(0,0,0,2h)
P1(m,m√2,0,0)
P2(m,m√2,0,3h)
P3(2m,0,0,h)
とおくと
P0P1^2=3m^2+4h^2
P0P2^2=3m^2+h^2
P0P3^2=4m^2+h^2
P1P2^2=9h^2
P1P3^2=3m^2+h^2
P2P3^2=3m^2+4h^2
4m^2+h^2(1)
V
3m^2+h^2(2)<3m^2+4h^2(2)
9h^2(1)
n=4の展開図は
P1P2=P2P3=P3P4=2
P1P3=P2P4=√6
P1P4=√6
であるから,
3m^2+h^2=9h^2=4→h^2=4/9,m^2=32/27
4m^2+h^2=3m^2+4h^2=6
は満たされない(NG).
===================================