■等面単体の体積(その386)
(その382)の
P0P1^2=9h^2
P0P2^2=9h^2
P0P3^2=12h^2
P1P2^2=12h^2
P1P3^2=9h^2
P2P3^2=9h^2
は
P0P1=P1P2=P2P3=√3
P0P2=P1P3=2
P0P3=√3
を満たしている.
===================================
(その384)の
P0P1^2=3m^2+h^2=4*
P0Px^2=3m^2+9h^2=6
P0P2^2=4m^2+4h^2=6
P0P3^2=3m^2+h^2=4*
P1Px^2=16h^2=4*
P1P2^2=3m^2+9h^2=6
P1P3^2=4m^2+4h^2=6
PxP2^2=3m^2+h^2=4*
PxP3^2=4m^2+4h^2=6
P2P3^2=3m^2+h^2=4*
は,どのようにシャッフルすれば
P0P1=P1P2=P2P3=P3P4=2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0P4=2
になるだろうか?
P0P1=P1P2=P2P3=P3P4=2
P0P4=2
P0P1^2=3m^2+h^2=4*
P0P3^2=3m^2+h^2=4**
P1Px^2=16h^2=4*
PxP2^2=3m^2+h^2=4*
P2P3^2=3m^2+h^2=4*
3→4,2→3,x→2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0Px^2=3m^2+9h^2=6
P0P2^2=4m^2+4h^2=6
P1P2^2=3m^2+9h^2=6
P1P3^2=4m^2+4h^2=6
PxP3^2=4m^2+4h^2=6
3→4,2→3,x→2
でOK.
===================================