■等面単体の体積(その386)

 (その382)の

  P0P1^2=9h^2

  P0P2^2=9h^2

  P0P3^2=12h^2

  P1P2^2=12h^2

  P1P3^2=9h^2

  P2P3^2=9h^2

  P0P1=P1P2=P2P3=√3

  P0P2=P1P3=2

  P0P3=√3

を満たしている.

===================================

 (その384)の

  P0P1^2=3m^2+h^2=4*

  P0Px^2=3m^2+9h^2=6

  P0P2^2=4m^2+4h^2=6

  P0P3^2=3m^2+h^2=4*

  P1Px^2=16h^2=4*

  P1P2^2=3m^2+9h^2=6

  P1P3^2=4m^2+4h^2=6

  PxP2^2=3m^2+h^2=4*

  PxP3^2=4m^2+4h^2=6

  P2P3^2=3m^2+h^2=4*

は,どのようにシャッフルすれば

  P0P1=P1P2=P2P3=P3P4=2

  P0P2=P1P3=P2P4=√6

  P0P3=P1P4=√6

  P0P4=2

になるだろうか?

  P0P1=P1P2=P2P3=P3P4=2

  P0P4=2

  P0P1^2=3m^2+h^2=4*

  P0P3^2=3m^2+h^2=4**

  P1Px^2=16h^2=4*

  PxP2^2=3m^2+h^2=4*

  P2P3^2=3m^2+h^2=4*

  3→4,2→3,x→2

  P0P2=P1P3=P2P4=√6

  P0P3=P1P4=√6

  P0Px^2=3m^2+9h^2=6

  P0P2^2=4m^2+4h^2=6

  P1P2^2=3m^2+9h^2=6

  P1P3^2=4m^2+4h^2=6

  PxP3^2=4m^2+4h^2=6

  3→4,2→3,x→2

でOK.

===================================