■等面単体の体積(その385)

 (その383)において,試しに

  P0(m,0,m√2,h)

  P1(0,0,0,0)

  Px(0,0,0,4h)

  P2(m,m√2,0,2h)

  P3(2m,0,0,3h)

とおくと,

  P0P1^2=3m^2+h^2

  P0Px^2=3m^2+9h^2

  P0P2^2=4m^2+h^2

  P0P3^2=3m^2+4h^2

  P1Px^2=16h^2

  P1P2^2=3m^2+4h^2

  P1P3^2=4m^2+9h^2

  PxP2^2=3m^2+4h^2

  PxP3^2=4m^2+h^2

  P2P3^2=3m^2+h^2

 3m^2+h^2(2)<3m^2+4h^2(3)<3m^2+9h^2(1)

 4m^2+h^2(2)<4m^2+9h^2(1)

 16h^2(1)

これは辺の長さが3種類以上であるからNG.

===================================