■等面単体の体積(その339)
n=6の本体でわかっているのは2種類ある.
P0(2/√3,0,0,0,√(7/6),√(7/3))
P1(0,0,0,0,0,0)
P2((√3)/2,(√7)/2,(√14)/2,0,0,0)
P3(√3,√7,0,0,0,0)
P4(9/√12,(√7)/2,0,(√14)/2,0,0)
P5(√12,0,0,0,0,0)
P6(4/√3,0,0,0,√(14/3),0)
P0P1=P1P2=P2P3=P3P4=P4P5=P5P6=√6
P0P2=P1P3=P2P4=P3P5=P4P6=√10
P0P3=P1P4=P2P5=P3P6=√12
P0P4=P1P5=P2P6=√12
P0P5=P1P6=√10
P0P6=√6
===================================
P0との距離が最短なのはP1かP6であるが,ここではP1を外してみる.
P1=P2+sP0P1=((√3)/2,(√7)/2,(√14)/2,0,0,0)+s(2/√3,0,0,0,√(7/6),√(7/2))
ベクトルs(2/√3,0,0,0,√(7/6),√(7/2))と直交するP1を通る平面
√8a+√7e+√21f=0
との交点を求める.
Q0=Q1(0,0,0,0,0,0)
Q2は,b=√7/2,c=√14/2,d=0
(a−√3/2)/√8=e/√7=f/√21=k
a=√3/2+√8k,e=√7k,f=√21k
√8a+√7e+√21f=0に代入
√6+8k+7k+21k=0,k=−√6/36
Q2(14√3/36,√7/2,√14/2,0,−√42/36,−√126/36)
Q3は,b=√7,c=0,d=0
(a−√3)/√8=e/√7=f/√21=k
a=√3+√8k,e=√7k,f=√21k
√8a+√7e+√21f=0に代入
2√6+8k+7k+21=0,k=−√6/18
Q3(14√3/18,√7,0,0,−√42/18,−√126/18)
Q4は,b=√7/2,c=0,d=√14/2
(a−9/√12)/√8=e/√7=f/√21=k
a=9/√12+√8k,e=√7k,f=√21k
√8a+√7e+√21f=0に代入
3√6+8k+7k+21=0,k=−√6/12
Q4(7√3/6,√7/2,0,√14/2,−√42/12,−√126/12)
Q5は,b=0,c=0,d=0
(a−√12)/√8=e/√7=f/√21=k
a=√12+√8k,e=√7k,f=√21k
√8a+√7e+√21f=0に代入
4√6+8k+7k+21=0,k=−√6/9
Q5(14√3/9,0,0,0,−√42/9,−√126/9)
Q6は,b=0,c=0,d=0
(a−4/√3)/√8=(e−√(14/3))/√7=f/√21=k
a=4/√3+√8k,e=√(14/3)+√7k,f=√21k
√8a+√7e+√21f=0に代入
8√6/3+8k+7√6/3+7k+21k=0,k=−5√6/36
Q6(28√3/36,0,0,0,7√42/36,−5√126/36)
Q1(0,0,0,0,0,0)
Q2(14√3/36,18√7/36,18√14/36,0,−√42/36,−√126/36)
Q3(28√3/36,36√7/36,0,0,−2√42/36,−2√126/36)
Q4(42√3/36,18√7/36,0,18√14/36,−3√42/36,−3√126/36)
Q5(56√3/36,0,0,0,−4√42/36,−4√126/36)
Q6(28√3/36,0,0,0,7√42/36,−5√126/36)
===================================
Q1Q2^2=7560/36^2
Q1Q3^2=12096/36^2
Q1Q4^2=13608/36^2
Q1Q5^2=12096/36^2
Q1Q6^2=7560/36^2
Q2Q3^2=7560/36^2
Q2Q4^2=7560/36^2
Q2Q5^2=13608/36^2
Q2Q6^2=12096/36^2
Q3Q4^2=7560/36^2
Q3Q5^2=12096/36^2
Q3Q6^2=13608/36^2
Q4Q5^2=7560/36^2
Q4Q6^2=12096/36^2
Q5Q6^2=7560/36^2
===================================
[まとめ]n=5のときの本体になっている.
P0P1=P1P2=P2P3=P3P4=P4P5=√5
P0P2=P1P3=P2P4=P3P5=√8
P0P3=P1P4=P2P5=3
P0P4=P1P5=√8
P0P5=√5
===================================