■等面単体の体積(その314)
(a−9/√12)^2+(b−(√7)/2)^2+c^2+(d−(√14)/2)^2+e^2=6
(a−4/√3)^2+b^2+c^2+d^2+(e−√(14/3))^2=6
(a−√3)^2+(b−√7)^2+c^2+d^2+e^2=10
(a−√3/2)^2+(b−√7/2)^2+(c−√14/2)^2+d^2+e^2=12
a^2+b^2+c^2+d^2+e^2=12
===================================
[1]a=2s/√3,b=0,c=0,d=0,e=−s√(14/3)
a=2/√3,b=0,c=0,d=0,e=−√(14/3) (NG)
a=−2/√3,b=0,c=0,d=0,e=√(14/3) (NG)
[2]a=2s/√3+3/√12,b=√7/2,c=√14/2,d=0,e=−s√(14/3)
a=7/√3,b=√7/2,c=√14/2,d=0,e=−√(14/3) (NG)
a=−1/√3,b=√7/2,c=√14/2,d=0,e=√(14/3) (NG)
[3]a=2s/√3+√3,b=3√7/2,c=0,d=0,e=−s√(14/3)
a=5/√3,b=3√7/2,c=0,d=0,e=−√(14/3) (NG)
a=−1/√3,b=3√7/2,c=0,d=0,e=√(14/3) (NG)
[4]a=2s/√3+9/√12,b=√7/2,c=0,d=√14/2,e=−s√(14/3)
a=13/√12,b=√7/2,c=0,d=√14/2,e=−√(14/3) (NG)
a=5/√12,b=√7/2,c=0,d=√14/2,e=√(14/3) (OK)
===================================
[まとめ]n=6の展開図はうまくいった.
===================================