■等面単体の体積(その314)

(a−9/√12)^2+(b−(√7)/2)^2+c^2+(d−(√14)/2)^2+e^2=6

(a−4/√3)^2+b^2+c^2+d^2+(e−√(14/3))^2=6

(a−√3)^2+(b−√7)^2+c^2+d^2+e^2=10

(a−√3/2)^2+(b−√7/2)^2+(c−√14/2)^2+d^2+e^2=12

a^2+b^2+c^2+d^2+e^2=12

===================================

[1]a=2s/√3,b=0,c=0,d=0,e=−s√(14/3)

a=2/√3,b=0,c=0,d=0,e=−√(14/3)  (NG)

a=−2/√3,b=0,c=0,d=0,e=√(14/3)  (NG)

[2]a=2s/√3+3/√12,b=√7/2,c=√14/2,d=0,e=−s√(14/3)

a=7/√3,b=√7/2,c=√14/2,d=0,e=−√(14/3)  (NG)

a=−1/√3,b=√7/2,c=√14/2,d=0,e=√(14/3)  (NG)

[3]a=2s/√3+√3,b=3√7/2,c=0,d=0,e=−s√(14/3)

a=5/√3,b=3√7/2,c=0,d=0,e=−√(14/3)  (NG)

a=−1/√3,b=3√7/2,c=0,d=0,e=√(14/3)  (NG)

[4]a=2s/√3+9/√12,b=√7/2,c=0,d=√14/2,e=−s√(14/3)

a=13/√12,b=√7/2,c=0,d=√14/2,e=−√(14/3)  (NG)

a=5/√12,b=√7/2,c=0,d=√14/2,e=√(14/3)  (OK)

===================================

[まとめ]n=6の展開図はうまくいった.

===================================