■等面単体の体積(その294)
P1(0,0,0,0)
P2(√2,√3,0,0)
P3(√8,0,0,0)
P4(a,b,c,d)
P5(√2,0,√2,2)
P4(√(9/2),0,√(9/2),0)
とおいて,
P1P2=P2P3=P3P4=P4P5=√5
P1P3=P2P4=P3P5=√8
P1P4=P2P5=3
P1P5=√8
を満たすものを探す.
(a−√8)^2+b^2+c^2+d^2=5
(a−√2)^2+(b−√3)^2+c^2+d^2=8
(a−√(9/2))^2+b^2+(c−√(9/2))^2+d^2=8
a^2+b^2+c^2+d^2=9
===================================
P4=P1+sP4P5=(0,0,0,0)+s(1/√2,0,1/√2,−2)
P4=P2+sP4P5=(√2,√3,0,0)+s(1/√2,0,1/√2,−2)
P4=P3+sP4P5=(√8,0,0,0),0)+s(1/√2,0,1/√2,−2)
となる新たなP4を選ぶ.
===================================