■等面単体の体積(その286)
P0(√(1/2),0,√(1/2),1,√3
P1(0,0,0,0,0)
P2(√2,√3,0,0,0)
P3(√8,0,0,0,0)
P4(√(9/2),0,√(9/2),0,0)
P5(√2,0,√2,2,0)
は
P0P1=P1P2=P2P3=P3P4=P4P5=√5
P0P2=P1P3=P2P4=P3P5=√8
P0P3=P1P4=P2P5=3
P0P4=P1P5=√8
P0P5=√5
を満たす.
===================================
P0(√(1/2),0,√(1/2),1,√3)
P1(a,b,c,d,e)
P2(√2,√3,0,0,0)
P3(√8,0,0,0,0)
P4(√(9/2),0,√(9/2),0,0)
P5(√2,0,√2,2,0)
とおいて,
P0P1=P1P2=P2P3=P3P4=P4P5=√5
P0P2=P1P3=P2P4=P3P5=√8
P0P3=P1P4=P2P5=3
P0P4=P1P5=√8
P0P5=√5
を満たすものを探す.
(a−√(1/2))^2+b^2+(c−√(1/2))^2+(d−1)^2+(e−√3)^2=5
(a−√2)^2+(b−√3)^2+c^2+d^2+e^2=5
(a−√8)^2+b^2+c^2+d^2+e^2=8
(a−√(9/2))^2+b^2+(c−√(9/2))^2+d^2+e^2=9
(a−√2))^2+b^2+(c−√2))^2+(d−2)^2+e^2=8
===================================
P1=P2+sP1P0=(√2,√3,0,0,0)+s(√(1/2),0,√(1/2),1,√3)
P1=P3+sP1P0=(√8,0,0,0,0)+s(√(1/2),0,√(1/2),1,√3)
P1=P4+sP1P0=(√(9/2),0,√(9/2),0,0) +s(√(1/2),0,√(1/2),1,√3)
P1=P5+sP1P0=(√2,0,√2,2,0)+s(√(1/2),0,√(1/2),1,√3)
となる新たなP1を選ぶ.
===================================