■等面単体の体積(その284)

P1(0,0,0,0)

P2(√2,√3,0,0)

P3(√8,0,0,0)

P4(√(9/2),0,√(9/2),0)

  P1P2=P2P3=P3P4=P4P5=√5

  P1P3=P2P4=P3P5=√8

  P1P4=P2P5=3

  P1P5=√8

を満たす.

P1(0,0,0,0)

P2(√2,√3,0,0)

P3(√8,0,0,0)

P4(√(9/2),0,√(9/2),0)

P5(x,y,z,w)とおく.

  x^2+y^2+z^2+w^2=8

  (x−√2)^2+(y−√3)^2+z^2+w^2=9

  (x−√8)^2+y^2+z^2+w^2=8

  (x−√(9/2))^2+y^2+(z−√(9/2))^2+w^2=5

  (x−√8)^2+8−x^2=8→−2x√8+8=0→x=√2

  y^2+z^2+w^2=6

  (y−√3)^2+z^2+w^2=9

  (y−√3)^2+6−y^2=9→y=0

  z^2+w^2=6

  1/2+(z−√(9/2))^2+w^2=5

  1/2+(z−√(9/2))^2+6−z^2=5

  2z√(9/2)=6→z=√2,w=2

===================================