■等面単体の体積(その284)
P1(0,0,0,0)
P2(√2,√3,0,0)
P3(√8,0,0,0)
P4(√(9/2),0,√(9/2),0)
は
P1P2=P2P3=P3P4=P4P5=√5
P1P3=P2P4=P3P5=√8
P1P4=P2P5=3
P1P5=√8
を満たす.
P1(0,0,0,0)
P2(√2,√3,0,0)
P3(√8,0,0,0)
P4(√(9/2),0,√(9/2),0)
P5(x,y,z,w)とおく.
x^2+y^2+z^2+w^2=8
(x−√2)^2+(y−√3)^2+z^2+w^2=9
(x−√8)^2+y^2+z^2+w^2=8
(x−√(9/2))^2+y^2+(z−√(9/2))^2+w^2=5
(x−√8)^2+8−x^2=8→−2x√8+8=0→x=√2
y^2+z^2+w^2=6
(y−√3)^2+z^2+w^2=9
(y−√3)^2+6−y^2=9→y=0
z^2+w^2=6
1/2+(z−√(9/2))^2+w^2=5
1/2+(z−√(9/2))^2+6−z^2=5
2z√(9/2)=6→z=√2,w=2
===================================