■等面単体の体積(その267)
P1(0,0,0)
P2((√6)/2,(√10)/2,0)
P3(√6,0,0)
P4(2√6/3,0,√30/3)
P2を外す.新たなP2を
P2=P1+sP2P4=(0,0,0)+s(√6/6,−√10/2,√30/3)
あるいは
P2=P3+sP2P4=(√6,0,0)+t(√6/6,−√10/2,√30/3)
とおく.
===================================
P1(0,0,0)
P2(x,y,z)
P3(√6,0,0)
P4(2√6/3,0,√30/3)
P1P2=P2P3=P3P4=2
P1P3=P2P4=√6
P1P4=√6
x^2+y^2+z^2=4
(x−√6)^2+y^2+z^2=4
(x−2√6/3)^2+y^2+(z−√30/3)^2=6
===================================
[1]x=s√6/6,y=−s√10/2,z=s√30/3
s^2/6+5s^2/2+10s^2/3=6s^2=6,s=1
x=√6/6,y=−√10/2,z=√30/3
25/6+5/2+10/3≠4
[2]x=t√6/6+√6,y=−t√10/2,z=t√30/3
t^2/6+5t^2/2+10t^2/3=6t^2=6,t=1
x=7√6/6,y=−√10/2,z=√30/3
49/6+10/4+10/3≠4
===================================