■等面単体の体積(その267)

P1(0,0,0)

P2((√6)/2,(√10)/2,0)

P3(√6,0,0)

P4(2√6/3,0,√30/3)

 P2を外す.新たなP2を

P2=P1+sP2P4=(0,0,0)+s(√6/6,−√10/2,√30/3)

あるいは

P2=P3+sP2P4=(√6,0,0)+t(√6/6,−√10/2,√30/3)

とおく.

===================================

P1(0,0,0)

P2(x,y,z)

P3(√6,0,0)

P4(2√6/3,0,√30/3)

  P1P2=P2P3=P3P4=2

  P1P3=P2P4=√6

  P1P4=√6

x^2+y^2+z^2=4

(x−√6)^2+y^2+z^2=4

(x−2√6/3)^2+y^2+(z−√30/3)^2=6

===================================

[1]x=s√6/6,y=−s√10/2,z=s√30/3

s^2/6+5s^2/2+10s^2/3=6s^2=6,s=1

x=√6/6,y=−√10/2,z=√30/3

25/6+5/2+10/3≠4

[2]x=t√6/6+√6,y=−t√10/2,z=t√30/3

t^2/6+5t^2/2+10t^2/3=6t^2=6,t=1

x=7√6/6,y=−√10/2,z=√30/3

49/6+10/4+10/3≠4

===================================