■等面単体の体積(その266)

 P1を外す.新たなP1を

P1=P2+sP1P4=((√6)/2,(√10)/2,0)+s(2√6/3,0,√30/3)

あるいは

P1=P3+sP1P4=(√6,0,0)+t(2√6/3,0,√30/3)

とおく.

===================================

P1(x,y,z)

P2((√6)/2,(√10)/2,0)

P3(√6,0,0)

P4(2√6/3,0,√30/3)

  P1P2=P2P3=P3P4=2

  P1P3=P2P4=√6

  P1P4=√6

(x−(√6)/2)^2+(y−(√10)/2)^2+z^2=4

(x−√6)^2+y^2+z^2=6

(x−2√6/3)^2+y^2+(z−√30/3)^2=6

===================================

[1]x=2s√6/3+√6/2,y=(√10)/2,z=s√30/3)

24s^2/9+10s^2/3=6s^2=6,s=1

x=7√6/6,y=√10/2,z=√30/3

1/6+10/4+10/3=(2+30+40)/12=6

6/4+10/4+0=4≠6

[2]x=2t√6/3+√6,y=0,z=t√30/3

8t^2/3+10t^2/3=6t^2=6,t=1

x=5√6/3,y=0,z=√30/3

49/6+10/4+10/3≠4

===================================