■等面単体の体積(その264)
P1(0,0,0)
P2((√6)/2,(√10)/2,0)
P3(√6,0,0)
P4(2√6/3,√10/20,√(397/120))
===================================
P2を外す.新たなP2を
P2=P1+sP2P4=(0,0,0)+s(√6/6,−9√10/20,√(397/120))
あるいは
P2=P3+sP2P4=(√6,0,0)+t(√6/6,−9√10/20,√(397/120))
とおく.
P1(0,0,0)
P2(x,y,z)
P3(√6,0,0)
P4(2√6/3,√10/20,√(397/120))
P1P2=P2P3=P3P4=2
P1P3=P2P4=√6
P1P4=√6
x^2+y^2+z^2=4
(x−√6)^2+y^2+z^2=6
(x−2√6/3)^2+(y−√10/20)^2+(z−√(397/120))^2=6
===================================
[1]x=s√6/6,y=−9s√10/20,z=s√(397/120)
s^2/6+810s^2/400+397s^2/120
=s^2/6+243s^2/120+397s^2/120
=s^2/6+16s^2/3≠6
===================================