■等面単体の体積(その264)

P1(0,0,0)

P2((√6)/2,(√10)/2,0)

P3(√6,0,0)

P4(2√6/3,√10/20,√(397/120))

===================================

 P2を外す.新たなP2を

P2=P1+sP2P4=(0,0,0)+s(√6/6,−9√10/20,√(397/120))

あるいは

P2=P3+sP2P4=(√6,0,0)+t(√6/6,−9√10/20,√(397/120))

とおく.

P1(0,0,0)

P2(x,y,z)

P3(√6,0,0)

P4(2√6/3,√10/20,√(397/120))

  P1P2=P2P3=P3P4=2

  P1P3=P2P4=√6

  P1P4=√6

x^2+y^2+z^2=4

(x−√6)^2+y^2+z^2=6

(x−2√6/3)^2+(y−√10/20)^2+(z−√(397/120))^2=6

===================================

[1]x=s√6/6,y=−9s√10/20,z=s√(397/120)

s^2/6+810s^2/400+397s^2/120

=s^2/6+243s^2/120+397s^2/120

=s^2/6+16s^2/3≠6

===================================