■等面単体の体積(その262)

P1(0,0,0)

P2((√6)/2,(√10)/2,0)

P3(√6,0,0)

  P1P2=P2P3=P3P4=2

  P1P3=P2P4=√6

  P1P4=√6

を満たすようにP4(x,y,z)をおく.

  x^2+y^2+z^2=6

  (x−√6)^2+y^2+z^2=4

  (x−√6/2)^2+(y−√10/2)^2+z^2=6

  (x−√6)^2+6−x^2=4

  −2√6x=−8,x=4/√6=2√6/3

  y^2+z^2=6−8/3=10/3

  (y−√10/2)^2+z^2=6−2/3=16/3

  −√10y+10/4+10/3=16/3

  −√10y=2−5/2=−1/2

  y=1/2√10=√10/20

  z^2=10/3−1/40=(400−3)/120=397/120

P1(0,0,0)

P2((√6)/2,(√10)/2,0)

P3(√6,0,0)

P4(2√6/3,√10/20,√(397/120))

===================================