■等面単体の体積(その262)
P1(0,0,0)
P2((√6)/2,(√10)/2,0)
P3(√6,0,0)
P1P2=P2P3=P3P4=2
P1P3=P2P4=√6
P1P4=√6
を満たすようにP4(x,y,z)をおく.
x^2+y^2+z^2=6
(x−√6)^2+y^2+z^2=4
(x−√6/2)^2+(y−√10/2)^2+z^2=6
(x−√6)^2+6−x^2=4
−2√6x=−8,x=4/√6=2√6/3
y^2+z^2=6−8/3=10/3
(y−√10/2)^2+z^2=6−2/3=16/3
−√10y+10/4+10/3=16/3
−√10y=2−5/2=−1/2
y=1/2√10=√10/20
z^2=10/3−1/40=(400−3)/120=397/120
P1(0,0,0)
P2((√6)/2,(√10)/2,0)
P3(√6,0,0)
P4(2√6/3,√10/20,√(397/120))
===================================