■等面単体の体積(その258)

 (その254)をやり直し.

  x^2+y^2+z^2=6

  (x−3/2)^2+(y−(√5)/2)^2+(z−(√10)/2)^2=4

  (x−2)^2+y^2+z^2=6

[2]x=t/2+2,y=−(√5)t/2,z=(√10)t/2

  t^2/4+5t^2/4+10t^2/4=6,t^2=3/2

  (t+4)^2/4+5t^2/4+10t^2/4=6

  (t+1)^2/4+5(t+1)^2/4+10(t−1)^2/4=4

  (t+4)^2+5t^2+10t^2=24

  (t+1)^2+5(t+1)^2+10(t−1)^2=16

  16t^2+8t+16=24

  16t^2−8t+16=16

===================================