■等面単体の体積(その258)
(その254)をやり直し.
x^2+y^2+z^2=6
(x−3/2)^2+(y−(√5)/2)^2+(z−(√10)/2)^2=4
(x−2)^2+y^2+z^2=6
[2]x=t/2+2,y=−(√5)t/2,z=(√10)t/2
t^2/4+5t^2/4+10t^2/4=6,t^2=3/2
(t+4)^2/4+5t^2/4+10t^2/4=6
(t+1)^2/4+5(t+1)^2/4+10(t−1)^2/4=4
(t+4)^2+5t^2+10t^2=24
(t+1)^2+5(t+1)^2+10(t−1)^2=16
16t^2+8t+16=24
16t^2−8t+16=16
===================================