■等面単体の体積(その257)
(その253)をやり直し.
x^2+y^2+z^2=4
(x−3/2)^2+(y−(√5)/2)^2+(z−(√10)/2)^2=4
(x−1)^2+(y−√5)^2+z^2=6
[2]x=−t/2+1,y=(√5)t/2+√5,z=(√10)t/2
t^2/4+5t^2/4+10t^2/4=6,t^2=3/2
(t−2)^2/4+5(t+2)^2/4+10t^2/4=4
(t+1)^2/4+5(t+1)^2/4+10t^2/4=6
(t−2)^2+5(t+2)^2+10t^2=16
(t+1)^2+5(t+1)^2+10t^2=24
6t^2+10t+24=16
6t^2+12t+6=24・・・(NG)
===================================