■等面単体の体積(その248)
(その245)の続き.
P0(1,0,√2)
P1(0,0,0)
P2(1,√2,0)
P3(2,0,0)
は,
P0P1=P1P2=P2P3=√3
P0P2=P1P3=2
P0P3=√3
を満たす.
ここでP1を外す.
P2P3=√3,P0P2=2,P0P3=√3
P1=P2+sP1P0=(1,√2,0)+s(1,0,√2),
P1=P3+tP1P0=(2,0,0)+t(1,0,√2)
となる,新たなP1を選んで
P0P1=P1P2=P2P3=√3
P0P2=P1P3=2
P0P3=√3
を満たすようにできればよい.
P0(1,0,√2)
P1(x,y,z)
P2(1,√2,0)
P3(2,0,0)
(x−1)^2+y^2+(z−√2)^2=3
(x−1)^2+(y−√2)^2+z^2=3
(x−2)^2+y^2+z^2=4
[1]x=s+1,y=√2,z=s√2
s^2+2+2(s−1)^2=3
s^2+2s^2=3
(s−1)^2+2+2s^2=4
s=1
P0(1,0,√2)
P1(1,√2,√2)
P2(1,√2,0)
P3(2,0,0)
[2]x=t+2,y=0,z=t√2
(t+1)^2+2(t−1)^2=3
(t+1)^2+2+2t^2=3
t^2+2t^2=4
t=2/√3はNG
===================================