■等面単体の体積(その248)

 (その245)の続き.

  P0(1,0,√2)

  P1(0,0,0)

  P2(1,√2,0)

  P3(2,0,0)

は,

  P0P1=P1P2=P2P3=√3

  P0P2=P1P3=2

  P0P3=√3

を満たす.

 ここでP1を外す.

  P2P3=√3,P0P2=2,P0P3=√3

P1=P2+sP1P0=(1,√2,0)+s(1,0,√2),

P1=P3+tP1P0=(2,0,0)+t(1,0,√2)

となる,新たなP1を選んで

  P0P1=P1P2=P2P3=√3

  P0P2=P1P3=2

  P0P3=√3

を満たすようにできればよい.

  P0(1,0,√2)

  P1(x,y,z)

  P2(1,√2,0)

  P3(2,0,0)

  (x−1)^2+y^2+(z−√2)^2=3

  (x−1)^2+(y−√2)^2+z^2=3

  (x−2)^2+y^2+z^2=4

[1]x=s+1,y=√2,z=s√2

  s^2+2+2(s−1)^2=3

  s^2+2s^2=3

  (s−1)^2+2+2s^2=4

  s=1

  P0(1,0,√2)

  P1(1,√2,√2)

  P2(1,√2,0)

  P3(2,0,0)

[2]x=t+2,y=0,z=t√2

  (t+1)^2+2(t−1)^2=3

  (t+1)^2+2+2t^2=3

  t^2+2t^2=4

  t=2/√3はNG

===================================