■基本単体の二面角(その242)

 ADEで問題とされているのはβnの半分だけである.そうでないと位数が合わない.βnの頂点図形はβn-1である.

===================================

 |E6|=6!・3・2^3・3=72・6!=x

 N0=x/2^4・5!=27

 N1=x/2・5!=216

 N2=x/6・2・6=720(α2)

 N3=x/24・2=1080(α3)

 N4=x/5!・2+x/5!=216(α4)+432(α4)

 N5=x/6!+x/2^4・5!=72(α5)+27(β4)

===================================

 |E7|=7!・2・2^3・3^2・4=8・9!=x

 N0=x/72・6!=56

 N1=x/2・2^4・5!=756

 N2=x/6・5!=(α2)

 N3=x/24・6・2=(α3)

 N4=x/5!・2=(α4)

 N5=x/6!・2+x/6!=2016(α5)+4032(α5)

 N6=x/7!+x/2^5・6!=576(α6)+126(β6)

===================================

 |E8|=8!・1・2^2・3^2・4^2・5・6=192・10!=x

 N0=x/8・9!=240

 N1=x/2・72・6=6720

 N2=x/6・2^4・5!=(α2)

 N3=x/24・5!=(α3)

 N4=x/5!・6・2=(α4)

 N5=x/6!・2=(α5)

 N6=x/7!・2+x/7!=69120(α6)+138240(α6)

 N7=x/8!+x/2^6・7!=17280(α7)+2160(β7)

===================================

 E8=421の双対がV(0)で,

 N0=19440

 N1=207360

 N2=483840

 N3=483840

 N4=241920

 N5=60480

 N6=6720

 N7=240

===================================