■等面単体の体積(その219)
内接可能性の判定はできないにしても・・・
===================================
[1]n=4のとき
P0P1=P1P2=P2P3=P3P4=2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0P4=2
[2]n=5のとき
P0P1=P1P2=P2P3=P3P4=P4P5=√5
P0P2=P1P3=P2P4=P3P5=√8
P0P3=P1P4=P2P5=3
P0P4=P1P5=√8
P0P5=√5
[3]n=6のとき
P0P1=P1P2=P2P3=P3P4=P4P5=P5P6=√6
P0P2=P1P3=P2P4=P3P5=P4P6=√10
P0P3=P1P4=P2P5=P3P6=√12
P0P4=P1P5=P2P6=√12
P0P5=P1P6=√10
P0P6=√6
[4]n=7のとき
P0P1=P1P2=P2P3=P3P4=P4P5=P5P6=P6P7=√7
P0P2=P1P3=P2P4=P3P5=P4P6=P5P7=√12
P0P3=P1P4=P2P5=P3P6=P4P7=√15
P0P4=P1P5=P2P6=P3P7=4
P0P5=P1P6=P2P7=√15
P0P6=P1P7=√12
P0P7=√7
であるから,n−1変数よりも2変数の方が正しいと思われる.
===================================