■等面単体の体積(その196)
[Q]3辺の長さが2,√3,√3であるテトラパック(等面四面体)の体積は?
等面四面体を直方体(a,b,c)に内接させる.
a^2+b^2=4
b^2+c^2=3
c^2+a^2=3
より,
a^2=2,b^2=2,c^2=1
V=abc−4abc/6=abc/3=2/3
===================================
n=7のとき
P0P1=P1P2=P2P3=P3P4=P4P5=P5P6=P6P7=√7
P0P2=P1P3=P2P4=P3P5=P4P6=P5P7=√12
P0P3=P1P4=P2P5=P3P6=P4P7=√15
P0P4=P1P5=P2P6=P3P7=4
P0P5=P1P6=P2P7=√15
P0P6=P1P7=√12
P0P7=√7
===================================
この空間充填等面単体は7次元直方体に内接する.等面体を直方体(a,b,c,d,e,f,g)に内接させる.
a^2+b^2=7
b^2+c^2=12
c^2+d^2=15
d^2+e^2=16
e^2+f^2=15
f^2+g^2=12
g^2+a^2=7
a^2=1,b^2=6,c^2=6,
d^2=9,e^2=7,f^2=8,g^2=4→a^2=3 (NG)
a^2=2,b^2=5,c^2=7,
d^2=8,e^2=8,f^2=7,g^2=5→a^2=2 (OK)
a^2=3,b^2=4,c^2=8,
d^2=7,e^2=9,f^2=6,g^2=6→a^2=1 (NG)
===================================
n=7の空間充填等面単体の体積は
V=abcdefg−2^6abcdefg/7!
=(√2)・5・7・8(1−2^6/7!)
=(√2)・5・8(7−2^6/6!)
と思われる.
===================================