■等面単体の体積(その185)
等面単体柱を
A(0,0,0,0)
B(2,0,0,a)
C(1,2,0,b)
D(1,0,√2,c)
E(0,0,0,d)
としてみる.
===================================
AB^2=4+a^2
AC^2=5+b^2
AD^2=3+c^2
AE^2=d^2
BC^2=5+(a−b)^2
BD^2=3+(a−c)^2
BE^2=(a−d)^2
CD^2=6+(b−c)^2
CE^2=5+(b−d)^2
DE^2=3+(c−d)^2
n=4のとき
P0P1=P1P2=P2P3=P3P4=2
P0P2=P1P3=P2P4=√6
P0P3=P1P4=√6
P0P4=2
であるから,
4+a^2=5+(a−b)^2=6+(b−c)^2=3+(c−d)^2=d^2
とおくと,
(a−b)^2=a^2−1
(b−c)^2=(a−b)^2−1
(c−d)^2=(b−c)^2+3
d^2=(c−d)^2+3=(b−c)^2+6=(a−b)^2+5=a^2+4
5+b^2=3+c^2=3+(a−c)^2=(a−d)^2=5+(b−d)^2=3d^2/2=3a^2/2+6
d^2=a^2+4
b^2=3a^2/2+1
c^2=3a^2/2+3
また,
3d^2=2(a−d)^2, d=kaを代入すると
3k^2=2(k−1)^2
k^2+4k−2=0,(k+2)^2=6,k=√6−2,d=(√6−2)a
(√6−2)^2a^2=a^2+4,a^2<0となりNG.
===================================