■等面単体の体積(その181)

 正四面体柱

  A(0,0,0,0)

  B(1,1,0,a)

  C(1,0,1,2a)

  D(0,1,1,3a)

  E(0,0,0,4a)

ではなく,等面単体柱としてみる.

===================================

[Q]3辺の長さが2,√3,√3であるテトラパック(等面四面体)の体積は?

 等面四面体を直方体(a,b,c)に内接させる.

  a^2+b^2=4

  b^2+c^2=3

  c^2+a^2=3

より,

  a^2=2,b^2=2,c^2=1

  V=abc−4abc/6=abc/3=2/3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

  A(0,0,0,0)

  B(√2,√2,0,a)

  C(√2,0,1,2a)

  D(0,√2,1,3a)

  E(0,0,0,4a)

  b^2=4+a^2

  c^2=3+4a^2

  d^2=3+9a^2

  4a=dとおくと,

  16a^2=3+9a^2,a^2=3/7

  b^2=31/7,c^2=33/7,d^2=84/7

  4a=cとおくと,

  16a^2=3+4a^2,a^2=1/4

  b^2=17/4,c^2=4,d^2=21/4

  4a=bとおくと,

  16a^2=4+a^2,a^2=4/15

  b^2=64/15,c^2=61/15,d^2=81/15

===================================