■等面単体の体積(その181)
正四面体柱
A(0,0,0,0)
B(1,1,0,a)
C(1,0,1,2a)
D(0,1,1,3a)
E(0,0,0,4a)
ではなく,等面単体柱としてみる.
===================================
[Q]3辺の長さが2,√3,√3であるテトラパック(等面四面体)の体積は?
等面四面体を直方体(a,b,c)に内接させる.
a^2+b^2=4
b^2+c^2=3
c^2+a^2=3
より,
a^2=2,b^2=2,c^2=1
V=abc−4abc/6=abc/3=2/3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A(0,0,0,0)
B(√2,√2,0,a)
C(√2,0,1,2a)
D(0,√2,1,3a)
E(0,0,0,4a)
b^2=4+a^2
c^2=3+4a^2
d^2=3+9a^2
4a=dとおくと,
16a^2=3+9a^2,a^2=3/7
b^2=31/7,c^2=33/7,d^2=84/7
4a=cとおくと,
16a^2=3+4a^2,a^2=1/4
b^2=17/4,c^2=4,d^2=21/4
4a=bとおくと,
16a^2=4+a^2,a^2=4/15
b^2=64/15,c^2=61/15,d^2=81/15
===================================