■等面単体の体積(その178)

[4]自己双対四面体は,等面多面体であって

  √(8/3)≦b<2

  {a^2,c^2}=1/2{8−b^2±{(3b^2−8)(8−b^2)}^1/2}

を満たすものに限る.

===================================

  b~^2=4−16λ^2/(4−b^2)=b^2

  1/λ^2=4/(4−a^2)+4/(4−b^2)+4/(4−c^2)

  b^2(4−b^2)=4(4−b^2)−16λ^2

  (4−b^2)^2=16λ^2

===================================

  a^2+b^2+c^2=8,a^2≦b^2≦c^2

  a^2+c^2=8−b^2

  c^2−a^2<b^2

  1/λ^2=4/(4−a^2)+4/(4−b^2)+4/(4−c^2)

が最大となるのは,a≦b≦c<2→λ=0

最小となるのはa=b=c=√(8/3)のとき,

  1/λ^2=9→λ^2=1/9

  b^2=4−4/3=8/3

  a~^2=4−16λ^2/(4−c^2)=a^2

  b~^2=4−16λ^2/(4−b^2)

  c~^2=4−16λ^2/(4−a^2)=c^2

  a^2(4−c^2)=4(4−c^2)−16λ^2

  c^2(4−a^2)=4(4−a^2)−16λ^2

  (4−a^2)(4−c^2)=16λ^2

===================================