■等面単体の体積(その178)
[4]自己双対四面体は,等面多面体であって
√(8/3)≦b<2
{a^2,c^2}=1/2{8−b^2±{(3b^2−8)(8−b^2)}^1/2}
を満たすものに限る.
===================================
b~^2=4−16λ^2/(4−b^2)=b^2
1/λ^2=4/(4−a^2)+4/(4−b^2)+4/(4−c^2)
b^2(4−b^2)=4(4−b^2)−16λ^2
(4−b^2)^2=16λ^2
===================================
a^2+b^2+c^2=8,a^2≦b^2≦c^2
a^2+c^2=8−b^2
c^2−a^2<b^2
1/λ^2=4/(4−a^2)+4/(4−b^2)+4/(4−c^2)
が最大となるのは,a≦b≦c<2→λ=0
最小となるのはa=b=c=√(8/3)のとき,
1/λ^2=9→λ^2=1/9
b^2=4−4/3=8/3
a~^2=4−16λ^2/(4−c^2)=a^2
b~^2=4−16λ^2/(4−b^2)
c~^2=4−16λ^2/(4−a^2)=c^2
a^2(4−c^2)=4(4−c^2)−16λ^2
c^2(4−a^2)=4(4−a^2)−16λ^2
(4−a^2)(4−c^2)=16λ^2
===================================