■等面単体の体積(その169)

1+2cosAcosBcosC=cos^2A+cos^2B+cos^2C

===================================

▲+{(1−c^2/2)−(1−a^2/2)(1−b^2/2)}{(1−b^2/2)−(1−c^2/2)(1−a^2/2)}{(1−a^2/2)−(1−b^2/2)(1−c^2/2)}

={Σ(1−c^2/2)^2c^2{1−(c/2)^2}+2(1−c^2/2)(1−a^2/2)(1−b^2/2)Σc^2{1−(c/2)^2}}−Σ(1−a^2/2)^2(1−b^2/2)^2c^2{1−(c/2)^2}

=(1−c^2/2)^2c^2{1−(c/2)^2}+(1−b^2/2)^2b^2{1−(b/2)^2}+(1−a^2/2)^2a^2{1−(a/2)^2}+2(1−c^2/2)(1−a^2/2)(1−b^2/2){c^2{1−(c/2)^2}+b^2{1−(b/2)^2}+a^2{1−(a/2)^2}}−(1−a^2/2)^2(1−b^2/2)^2c^2{1−(c/2)^2}−(1−c^2/2)^2(1−a^2/2)^2b^2{1−(b/2)^2}−(1−b^2/2)^2(1−c^2/2)^2a^2{1−(a/2)^2}

===================================

[まとめ]途猶遠しであるが,いずれにせよ,球面三角法は高次元に一般化することはできないし,等面単体が球に内接することも自明である.

===================================