■等面単体の体積(その169)
1+2cosAcosBcosC=cos^2A+cos^2B+cos^2C
===================================
▲+{(1−c^2/2)−(1−a^2/2)(1−b^2/2)}{(1−b^2/2)−(1−c^2/2)(1−a^2/2)}{(1−a^2/2)−(1−b^2/2)(1−c^2/2)}
={Σ(1−c^2/2)^2c^2{1−(c/2)^2}+2(1−c^2/2)(1−a^2/2)(1−b^2/2)Σc^2{1−(c/2)^2}}−Σ(1−a^2/2)^2(1−b^2/2)^2c^2{1−(c/2)^2}
=(1−c^2/2)^2c^2{1−(c/2)^2}+(1−b^2/2)^2b^2{1−(b/2)^2}+(1−a^2/2)^2a^2{1−(a/2)^2}+2(1−c^2/2)(1−a^2/2)(1−b^2/2){c^2{1−(c/2)^2}+b^2{1−(b/2)^2}+a^2{1−(a/2)^2}}−(1−a^2/2)^2(1−b^2/2)^2c^2{1−(c/2)^2}−(1−c^2/2)^2(1−a^2/2)^2b^2{1−(b/2)^2}−(1−b^2/2)^2(1−c^2/2)^2a^2{1−(a/2)^2}
===================================
[まとめ]途猶遠しであるが,いずれにせよ,球面三角法は高次元に一般化することはできないし,等面単体が球に内接することも自明である.
===================================