■eの連分数展開(その7)
e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,・・・]
e=[2;1,2,1,1,4,1,1,6,1,・・・,1,2n,1,・・・]
a1=2
a3m-1=1
a3m=2m
a3m+1=1と書ける
p0=1,q0=0
p1=2,q1=1
p2=p1+p0=3,q2=q1+q0=1
p3=2p2+p1=8,q3=2q2+q1=3
p4=p3+p2=11,q4=q3+q2=4
p5=p4+p3=19,q5=q4+q3=7
p6=4p5+p4=87,q6=4q5+q4=32
[参]吉田信夫「数学の不思議にきづく勘所、技術評論社
===================================
f0(x)=1/0!・x^0(x-1)^1,f1(x)=1/0!・x^1(x-1)^0
f2(x)=1/1!・x^1(x-1)^1,f3(x)=1/1!・x^1(x-1)^2
f4(x)=1/1!・x^2(x-1)^1,f5(x)=1/2!・x^2(x-1)^2
f2(x)=1/2!・x^2(x-1)^3,f7(x)=1/2!・x^3(x-1)^3
f8(x)=1/3!・x^3(x-1)^3,・・・
f3m(x)=1/m!・x^m(x-1)^m+1
f3m+1(x)=1/m!・x^m+1(x-1)^m+1
f3m+2(x)=1/(m+1)!・x^m+1(x-1)^m+1
∫(0,∞)exp(-x)fn(x)dx=qn
e∫(1,∞)exp(-x)fn(x)dx=pn
pn/qn→e
===================================
p3m-1=p3m-2+p3m-3,q3m-1=q3m-2+q3m-3
p3m=2mp3m-1+p3m-2,q3m=2mq3m-1+q3m-2
p3m+1=p3m+p3m-1,q3m+1=q3m+q3m-1
f3m+1=(x)=f3m(x)+f3m-1(x)
===================================