̖îRVj
1/n!{1/(n+1)-1/(n+2)}=1/(n+2)!l
1/n!{1/(n+1)}=1/(n+1)!
1/n!(n+2)=1/(n+1)!-1/(n+2)!={1/2!+1/3!+1/4!+EEE}-{1/3!+1/4!+1/5!+EEE}
=1/2
1/(n+1)!{1/(n+2)-1/(n+3)}=1/(n+3)!l
1/(n+1)!{1/(n+2)}=1/(n+2)!
1/(n+1)!(n+3)=1/(n+2)!-1/(n+3)!={1/3!+1/4!+1/5!+EEE}-{1/4!+1/5!+1/6!+EEE}
=1/6