■2COS(2π/13)=(-1+√13)/6+{(26-5√13+i3√39)/54}^1/3+{(26-5√13-i3√(39)/54}^1/3(その5)

正13角形のベキ根表示

2COS(2π/13)=(-1+√13)/6+{(26-5√13+i3√39)/54}^1/3+{(26-5√13-i3√(39)/54}^1/3=x

が成り立つ。

===================================

また、

ω=(-1+i√3)/2

B1=-1/3+ω^2{(-65+39i√3)/54}^1/3+ω{(-65-39i√3)/54}^1/3

B4=-1/3+ω{(-65+39i√3)/54}^1/3+ω^2{(-65-39i√3)/54}^1/3とおくと、

2COS(2π/13)=(B1+√(B1*B1-4*B4))/2

同値にはみえないであろう。

x^2-B1x+b4=0を満たすから、等式

{(-1+√13)/6+2{(52(26-5√13))^1/2/54}^1/3cos(1/3・arctant(12√13+30)/54)}^2 -{(-1+√13)/6+2{(52(26-5√13))^1/2/54}^1/3cos(1/3・arctant(12√13+30)/54)}2{-1/3+(6√13/54)^1/3cos(1/3・arctan(-39√9/54)-2π/3)} +2{-1/3+(6√13/54)^1/3cos(1/3・arctan(-39√9/54)+2π/3)}=0

が成り立つ

===================================

正11角形のベキ根表示はもっと複雑な式になった。

w={-1+√5+i(10+2√5)^1/2}/4

w^2={-1-√5+i(10-2√5)^1/2}/4

w^3={-1-√5-i(10-2√5)^1/2}/4

w^4={-1+√5-i(10+2√5)^1/2}/4

α=[-11/4{89+25√5+i(45(5-2√5)^1/2-5(5+2√5)^1/2}]^1/5

β=[-11/4{89-25√5+i(45(5+2√5)^1/2+5(5-2√5)^1/2}]^1/5

γ=[-11/4{89-25√5-i(45(5+2√5)^1/2+5(5-2√5)^1/2}]^1/5

δ=[-11/4{89+25√5-i(45(5-2√5)^1/2-5(5+2√5)^1/2}]^1/5

2cos(2π/11)=-1/5+w/5(α)+w/5(β)+w^4/5(γ)+w^4/5(δ)

===================================

2cos(2π/7)=-1/3+{7/54+(21i√3)/54}^1/3+{7/54-(21i√3)/54}^1/3

2cos(2π/9)={-1/2+(i√3)/2}^1/3+{-1/2-(i√3)/2}^1/3

===================================