■正多角形の作図と原始根(その295)

最初に2群に分けてから3次方程式を解いた方が、きれいな解が得られる。

正13角形のベキ根表示

2COS(2π/13)=(-1+√13)/6+{(26-5√13+i3√39)/54}^1/3+{(26-5√13-i3√(39)/54}^1/3

が成り立つ。

===================================

最初に3群に分けてから2次方程式を解くと、

ω=(-1+i√3)/2

B1=-1/3+ω^2{(-65+39i√3)/54}^1/3+ω{(-65-39i√3)/54}^1/3

B4=-1/3+ω{(-65+39i√3)/54}^1/3+ω^2{(-65-39i√3)/54}^1/3とおくと、

x=2COS(2π/13)=(B1+√(B1*B1-4*B4))/2

x-B1/2=√(B1*B1-4*B4)/2

(x-B1/2)^2=B1^2/4-B4

x^2-B1x+B4=0

x=(-1+√13)/2+2r1^1/3cos(t1/3)を代入すればよいことになる

===================================

a+bi=(a^2+b^2)^1/2{a/(a^2+b^2)^1/2+ib/(a^2+b^2)^1/2}として、虚部を消すことを考える。

|-65+39i√3|/54=(65^2+3・39^2)^1/2/54=(13^3・4)^1/2/54=r1=(13^3・4)^1/2/2・3^3=26√13/54=r1

r1^1/3=13^(1/2)/3=√13/3

-65/54=r1cost1,39√3/54=r1sint1

tant1=-39√9/54・・・負なのでarctanの補正が必要

B1+1/3=(r1^1/3cos(t1/3-2π/3)+ir1^1/3sin(t1/3-2π/3))+(r1^1/3cos(-t1/3+2π/3)+ir1^1/3sin(-t1/3+2π/3))

=2r1^1/3cos(t1/3-2π/3)=2=2{6√13/54}^1/2cos(1/3・arctan(-39√9/54)-2π/3)

B4+1/3=(r1^1/3cos(t1/3+2π/3)+ir1^1/3sin(t1/3+2π/3))+(r1^1/3cos(-t1/3-2π/3)+ir1^1/3sin(-t1/3-2π/3))

=2r1^1/3cos(t1/3+2π/3)=2{6√13/54}^1/2cos(1/3・arctan(-39√9/54)+2π/3)

B1^2=1/9+(r1^1/3cos(t1/3))^2+3(r1^1/3sin(t1/3))^2+2/3r1^1/3cos(t1/3)-2√3/3r1^1/3sin(t1/3)-2√3(r1^1/3cos(t1/3))(r1^1/3sin(t1/3))

B1^2-4B4==1/9+(r1^1/3cos(t1/3))^2+3(r1^1/3sin(t1/3))^2+2/3r1^1/3cos(t1/3)-2√3/3r1^1/3sin(t1/3)-2√3(r1^1/3cos(t1/3))(r1^1/3sin(t1/3)) +4/3+4r1^1/3cos(t1/3)+4√3r1^1/3sin(t1/3)

=13/9+(r1^1/3cos(t1/3))^2+3(r1^1/3sin(t1/3))^2-2√3(r1^1/3cos(t1/3))(r1^1/3sin(t1/3)) +14/3r1^1/3cos(t1/3)+10√3r1^1/3sin(t1/3)

実数にはなったが、これ以上簡単な形にはならない

===================================

x=(-1+√13)/6+{(26-5√13+i3√39)/54}^1/3+{(26-5√13-i3√(39)/54}^1/3

|26-5√13+i3√39|/54→{(1352-260√13)^1/2}/54={52(26-5√13)}^1/2/54=r1

(26-5√13)/(26-5√13)=3√3/54=r1cost1,3√39/54=r1sint1,3√39/54=r1sin(-t1)

tant1=3√39/(26-5√13)=3√39(26+5√13)/27・13=3√39(26+5√13)/27・13=(26√39+13・5√3)/9・13=(2√39+5√3)/9

tant1=3√39/(26-5√13)=√39(26+5√13)/351=√39(26+5√13)/9・13=(12√39+30√3)/54

x=(-1+√13)/6+2r1^1/3cos(t1/3)

x=(-1+√13)/6+2{{52(26-5√13)}^1/2/54}^1/3cos(1/3・arctant(12√13+30)/54)

と簡単な形になる

===================================

{(-1+√13)/6+2{(52(26-5√13))^1/2/54}^1/3cos(1/3・arctant(12√13+30)/54)}^2 -{(-1+√13)/6+2{(52(26-5√13))^1/2/54}^1/3cos(1/3・arctant(12√13+30)/54)}2{-1/3+(6√13/54)^1/3cos(1/3・arctan(-39√9/54)-2π/3)} +2{-1/3+(6√13/54)^1/3cos(1/3・arctan(-39√9/54)+2π/3)}=0

===================================