■正多角形の作図と原始根(その291)
最初に2群に分けてから3次方程式を解いた方が、きれいな解が得られる。
正13角形のベキ根表示
2COS(2π/13)=(-1+√13)/6+{(26-5√13+i3√39)/54}^1/3+{(26-5√13-i3√(39)/54}^1/3
が成り立つ。
===================================
最初に3群に分けてから2次方程式を解くと、
ω=(-1+i√3)/2
B1=-1/3+ω^2{(-65+39i√3)/54}^1/3+ω{(-65-39i√3)/54}^1/3
B4=-1/3+ω{(-65+39i√3)/54}^1/3+ω^2{(-65-39i√3)/54}^1/3とおくと、
x=2COS(2π/13)=(B1+√(B1*B1-4*B4))/2
実数解で比較したい。
a+bi=(a^2+b^2)^1/2{a/(a^2+b^2)^1/2+ib/(a^2+b^2)^1/2}として、虚部を消すことを考える。
|-65+39i√3|/54=(65^2+3・39^2)^1/2/54=(13^3・4)^1/2/54=r1
-65/54=r1cost1,39√3/54=r1sint1
B1+1/3=ω^2(r1^1/3cos(t1/3)+ir1^1/3sin(t1/3))+ω(r1^1/3cos(t1/3)+ir1^1/3sin(-t1/3))
=(ω^2+ω)r1^1/3cos(t1/3)+i(ω^2-ω)r1^1/3sin(t1/3)
=-r1^1/3cos(t1/3)+i√3r1^1/3sin(t1/3)
B4+1/3=ω(r1^1/3cos(t1/3)+ir1^1/3sin(t1/3))+ω^2(r1^1/3cos(t1/3)+ir1^1/3sin(-t1/3))
=(ω+ω^2)r1^1/3cos(t1/3)+i(ω-ω^2)r1^1/3sin(t1/3)
=-r1^1/3cos(t1/3)-i√3r1^1/3sin(t1/3)
B1^2=1/9+ω{((-65+39i√3)/54)^2}^1/3+ω^2{((-65-39i√3)/54)^2}^1/3
-2/3ω^2{(-65+39i√3)/54}^1/3-2/3ω{(-65-39i√3)/54}^1/3+2{(-65+39i√3)/54(-65-39i√3)/54}^1/3
((-65+39i√3)/54)^2=(-338-5070i√3)/54^2=(-2・13^2-30・13^2i√3)/54^2
r2cost2=-338/54^2,r2sint2=-5070i√3/54^2,r2=(77237732)^1/2/54^4
((-65-39i√3)/54)^2=(-338+5070i√3)/54^2=(-2・13^2+30・13^2i√3)/54^2
(-65+39i√3)/54(-65-39i√3)/54=8788/54^2=2^2・13^3/54^2=(13/9)^3
B1^2=1/9+ω{r2^1/3cos(t2/3)+r2^1/3sin(t2/3)}+ω^2{r2^1/3cos(t2/3)-r2^1/3sin(t2/3)}2
-2/3ω^2(r1^1/3cos(t1/3)+r1^1/3sin(t1/3))-2/3ω(r1^1/3cos(t1/3)-r1^1/3sin(t1/3))+2(13/9)
B1^2-4B4=1/9+ω{r2^1/3cos(t2/3)+r2^1/3sin(t2/3)}+ω^2{r2^1/3cos(t2/3)-r2^1/3sin(t2/3)}2
-2/3ω^2(r1^1/3cos(t1/3)+r1^1/3sin(t1/3))-2/3ω(r1^1/3cos(t1/3)-r1^1/3sin(t1/3))+2(13/9)
+4/3+4r1^1/3cos(t1/3)+4i√3r1^1/3sin(t1/3)
B1^2-4B4=1/9-r2^1/3cos(t2/3)+i√3r2^1/3sin(t2/3)
+2/3r1^1/3cos(t1/3)+2/3r1^1/3sin(t1/3)+2(13/9)
+4/3+4r1^1/3cos(t1/3)+4i√3r1^1/3sin(t1/3)
===================================
x=(-1+√13)/6+{(26-5√13+i3√39)/54}^1/3+{(26-5√13-i3√(39)/54}^1/3
|26-5√13+i3√39|/54→{(1352-260√13)^1/2}/54={52(26-5√13)}^1/2/54=r1
(26-5√13)/54=r1cost1,3√39/54=r1sint1,3√39/54=r1sin(-t1)
x=(-1+√13)/6+2r1^1/3cos(t1/3)
と簡単な形になる
===================================