■正多角形の作図と原始根(その276)

 3次方程式:x^3=px+qの解は

  x=3√A+3√B

  A=q/2+√((q/2)^2−(p/3)^3)

  B=q/2−√((q/2)^2−(p/3)^3)

で与えられる.

===================================

γ、δ,εはx^3-(−1+√13)/2x^2-x-(3−√13)/2=0の解である,γ=2cos(2π/13)

x=(y+a/3),a=(−1+√13)/2),b=(3−√13)/2とおくとa+b=1,-b=a-1

y^3+a・y^2+a^2y/3+a^3/27-a(y^2+2a/3y+a^2/9)-(y+a/3)+a-1=0

y^3+(a^2/3-2a^2/3-1)y+a^3/27-a^3/9-a/3+a-1=0

y^3+(-a^2/3-1)y-2a^3/27+2a/3-1=0

p=a^2/3+1=(14-2√13)/12+1=(26-2√13)/12=(13-√13)/6

q=2a^3/27-2a/3+1=(-1+3√13-39+13√13)/108-(-1+√13)/3+1=

=(-40+16√13)/108+(4-√13)/3

=(-10+4√13)/27+(36-9√13)/27

=(26-5√13)/27

(q/2)^2-(p/3)^3=((26-5√13)/54)^2-((13-√13)/18)^3

=(676-260√13+325)/54^2-27(2197-507√13+507-13√13)/54^3

=(1001-260√13)/54^2-27(2704-520√13)/54^3

=54(1001-260√13)/54^3-27(2704-520√13)/54^3

=(-18954)/54^3

=(-351)/54^2

===================================

b2,b5,b6はx^3-(−1-√13)/2x^2-x-(3+√13)/2=0の解である,b2=2cos(4π/13)

x=(y+a/3),a=(−1-√13)/2),b=(3+√13)/2とおくとa+b=1

y^3+a・y^2+a^2y/3+a^3/27-a(y^2+2a/3y+a^2/9)-(y+a/3)+a-1=0

y^3+(a^2/3-2a^2/3-1)y+a^3/27-a^3/9-a/3+a-1=0

y^3+(-a^2/3-1)y-2a^3/27+2a/3-1=0

p=a^2/3+1=(14+2√13)/12+1=(26+2√13)/12

q=2a^3/27-2a/3+1=(-1-3√13-39-13√13)/108-(-1-√13)/3+1=

=(-40-16√13)/108+(4+√13)/3

=(-10-4√13)/27+(4+√13)/3

=(-10-4√13)/27+(36+9√13)/27=(26+5√13)/27

(q/2)^2-(p/3)^3=((26+5√13)/54)^2-((13+√13)/18)^3

=(676+260√13+325)/54^2-27(2197+507√13+507+13√13)/54^3

=(1001+260√13)/54^2-27(2704+520√13)/54^3

=54(1001+260√13)/54^3-27(2704+520√13)/54^3

=(-18954)/54^3

=(-351)/54^2

===================================

3000 '

3010 R=(-1+SQR(13))/2

3020 P=(13-SQR(13))/6

3030 Q=(26-5*SQR(13))/27

3040 A=(26-5*SQR(13))/54

3050 B=SQR(351)/54

3060 W0=0:W1=PI*2/3:W2=PI*4/3

3070 DIM W(10)

3080 '

3090 PFILE$="scrn:":'pfile$="b:12345.txt"

3100 'PFILE$="12345.txt"

3110 OPEN PFILE$ FOR OUTPUT AS #1

3120 W(1)=W0:W(2)=W0:GOSUB *CALC5

3130 B1=Y:PRINT #1, 2*COS(PI*2/13)

3140 '

3150 W(1)=W2:W(2)=W1:GOSUB *CALC5

3160 B3=Y:PRINT #1, 2*COS(PI*6/13)

3170 '

3180 W(1)=W1:W(2)=W2:GOSUB *CALC5

3190 B4=Y: PRINT #1, 2*COS(PI*8/13)

3200 '

3210 R=(-1-SQR(13))/2

3220 P=(13+SQR(13))/6

3230 Q=(26+5*SQR(13))/27

3240 A=(26+5*SQR(13))/54

3250 B=SQR(351)/54

3260 '

3270 W(1)=W0:W(2)=W0:GOSUB *CALC5

3280 B2=Y:PRINT #1, 2*COS(PI*4/13)

3290 '

3300 W(1)=W2:W(2)=W1:GOSUB *CALC5

3310 B5=Y:PRINT #1, 2*COS(PI*10/13)

3320 '

3330 W(1)=W1:W(2)=W2:GOSUB *CALC5

3340 B6=Y: PRINT #1, 2*COS(PI*12/13)

3350 '

3360 END

3370 '

3380 *CALC5:

3390 SS=0:TT=0

3400 REA=A:IMA=B :WA=0 :WZ=W(1):GOSUB *CALC6

3410 REA=A:IMA=-B :WA=0 :WZ=W(2):GOSUB *CALC6

3420 Y=R/3+SS

3430 PRINT #1," "

3440 PRINT #1,Y,Y^3-R*Y^2-Y+R-1

3450 RETURN

3460 '

3470 *CALC6:

3480 ZA=SQR(REA^2+IMA^2)

3490 TANA=IMA/REA

3500 TH=ATN(TANA)

3510 'PRINT COS(TH/3+WA)*ZA^(1/3)

3520 'PRINT SIN(TH/3+WA)*ZA^(1/3)

3530 REZ=COS(TH/3+WA+WZ)*ZA^(1/3)

3540 IMZ=SIN(TH/3+WA+WZ)*ZA^(1/3)

3550 'PRINT REZ

3560 SS=SS+REZ

3570 TT=TT+IMZ

3580 RETURN

1.77091 3.57628E-07

1.77091

.241072 1.78814E-06

.241076

-.709211 -2.02656E-06

-.709207

1.13613 -2.38419E-07

1.13613

-1.49702 1.90735E-06

-1.49702

-1.94188 -2.14577E-06

-1.94188

===================================