■正多角形の作図と原始根(その276)
3次方程式:x^3=px+qの解は
x=3√A+3√B
A=q/2+√((q/2)^2−(p/3)^3)
B=q/2−√((q/2)^2−(p/3)^3)
で与えられる.
===================================
γ、δ,εはx^3-(−1+√13)/2x^2-x-(3−√13)/2=0の解である,γ=2cos(2π/13)
x=(y+a/3),a=(−1+√13)/2),b=(3−√13)/2とおくとa+b=1,-b=a-1
y^3+a・y^2+a^2y/3+a^3/27-a(y^2+2a/3y+a^2/9)-(y+a/3)+a-1=0
y^3+(a^2/3-2a^2/3-1)y+a^3/27-a^3/9-a/3+a-1=0
y^3+(-a^2/3-1)y-2a^3/27+2a/3-1=0
p=a^2/3+1=(14-2√13)/12+1=(26-2√13)/12=(13-√13)/6
q=2a^3/27-2a/3+1=(-1+3√13-39+13√13)/108-(-1+√13)/3+1=
=(-40+16√13)/108+(4-√13)/3
=(-10+4√13)/27+(36-9√13)/27
=(26-5√13)/27
(q/2)^2-(p/3)^3=((26-5√13)/54)^2-((13-√13)/18)^3
=(676-260√13+325)/54^2-27(2197-507√13+507-13√13)/54^3
=(1001-260√13)/54^2-27(2704-520√13)/54^3
=54(1001-260√13)/54^3-27(2704-520√13)/54^3
=(-18954)/54^3
=(-351)/54^2
===================================
b2,b5,b6はx^3-(−1-√13)/2x^2-x-(3+√13)/2=0の解である,b2=2cos(4π/13)
x=(y+a/3),a=(−1-√13)/2),b=(3+√13)/2とおくとa+b=1
y^3+a・y^2+a^2y/3+a^3/27-a(y^2+2a/3y+a^2/9)-(y+a/3)+a-1=0
y^3+(a^2/3-2a^2/3-1)y+a^3/27-a^3/9-a/3+a-1=0
y^3+(-a^2/3-1)y-2a^3/27+2a/3-1=0
p=a^2/3+1=(14+2√13)/12+1=(26+2√13)/12
q=2a^3/27-2a/3+1=(-1-3√13-39-13√13)/108-(-1-√13)/3+1=
=(-40-16√13)/108+(4+√13)/3
=(-10-4√13)/27+(4+√13)/3
=(-10-4√13)/27+(36+9√13)/27=(26+5√13)/27
(q/2)^2-(p/3)^3=((26+5√13)/54)^2-((13+√13)/18)^3
=(676+260√13+325)/54^2-27(2197+507√13+507+13√13)/54^3
=(1001+260√13)/54^2-27(2704+520√13)/54^3
=54(1001+260√13)/54^3-27(2704+520√13)/54^3
=(-18954)/54^3
=(-351)/54^2
===================================
3000 '
3010 R=(-1+SQR(13))/2
3020 P=(13-SQR(13))/6
3030 Q=(26-5*SQR(13))/27
3040 A=(26-5*SQR(13))/54
3050 B=SQR(351)/54
3060 W0=0:W1=PI*2/3:W2=PI*4/3
3070 DIM W(10)
3080 '
3090 PFILE$="scrn:":'pfile$="b:12345.txt"
3100 'PFILE$="12345.txt"
3110 OPEN PFILE$ FOR OUTPUT AS #1
3120 W(1)=W0:W(2)=W0:GOSUB *CALC5
3130 B1=Y:PRINT #1, 2*COS(PI*2/13)
3140 '
3150 W(1)=W2:W(2)=W1:GOSUB *CALC5
3160 B3=Y:PRINT #1, 2*COS(PI*6/13)
3170 '
3180 W(1)=W1:W(2)=W2:GOSUB *CALC5
3190 B4=Y: PRINT #1, 2*COS(PI*8/13)
3200 '
3210 R=(-1-SQR(13))/2
3220 P=(13+SQR(13))/6
3230 Q=(26+5*SQR(13))/27
3240 A=(26+5*SQR(13))/54
3250 B=SQR(351)/54
3260 '
3270 W(1)=W0:W(2)=W0:GOSUB *CALC5
3280 B2=Y:PRINT #1, 2*COS(PI*4/13)
3290 '
3300 W(1)=W2:W(2)=W1:GOSUB *CALC5
3310 B5=Y:PRINT #1, 2*COS(PI*10/13)
3320 '
3330 W(1)=W1:W(2)=W2:GOSUB *CALC5
3340 B6=Y: PRINT #1, 2*COS(PI*12/13)
3350 '
3360 END
3370 '
3380 *CALC5:
3390 SS=0:TT=0
3400 REA=A:IMA=B :WA=0 :WZ=W(1):GOSUB *CALC6
3410 REA=A:IMA=-B :WA=0 :WZ=W(2):GOSUB *CALC6
3420 Y=R/3+SS
3430 PRINT #1," "
3440 PRINT #1,Y,Y^3-R*Y^2-Y+R-1
3450 RETURN
3460 '
3470 *CALC6:
3480 ZA=SQR(REA^2+IMA^2)
3490 TANA=IMA/REA
3500 TH=ATN(TANA)
3510 'PRINT COS(TH/3+WA)*ZA^(1/3)
3520 'PRINT SIN(TH/3+WA)*ZA^(1/3)
3530 REZ=COS(TH/3+WA+WZ)*ZA^(1/3)
3540 IMZ=SIN(TH/3+WA+WZ)*ZA^(1/3)
3550 'PRINT REZ
3560 SS=SS+REZ
3570 TT=TT+IMZ
3580 RETURN
1.77091 3.57628E-07
1.77091
.241072 1.78814E-06
.241076
-.709211 -2.02656E-06
-.709207
1.13613 -2.38419E-07
1.13613
-1.49702 1.90735E-06
-1.49702
-1.94188 -2.14577E-06
-1.94188
===================================