■正多角形の作図と原始根(その270)
[Q]cos2π/13+cos6π/13+cos18π/13=?
[Q]sin2π/13+sin6π/13+sin18π/13=?
===================================
最初に3群に分けると
b2=a^2+a^3+a^11+a^10
b4=a^4+a^6+a^9+a^7
b1=a^8+a^12+a^5+a
b2b4=a^6+a^8+a^11+a^9+a^7+a^9+a^12+a^10+a^2+a^4+a^7+a^5+a+a^3+a^6+a^4
=2b4+b1+b2
b4b1=a^12+a^3+a^9+a^5+a+a^5+a^11+a^7+a^4+a^8+a+a^10+a^2+a^6+a^12+a^8
=2b1+b2+b4
b1b2=a^10+a+a^7+a^3+a^11+a^2+a^8+a^4+a^6+a^10+a^3+a^12+a^5+a^9+a^2+a^11
=2b2+b1+b4
b2b4+b4b1+b1b2=4(b1+b2+b4)=-4
b2b4b1=2b4b1+b1^2+b1b2=4b1+2b2+2b4+b1^2+2b2+b1+b4=5b1+4b2+3b4+b1^2
b1^2=a^3+a^11+a^10+a^2+2a^7+2+2a^9+2a^4+2+2a^6
b1^2=b2+2a^7+2+2a^9+2a^4+2+2a^6=b2+2b4+4
b2b4b1=5b1+4b2+3b4+b2+2b4+4=5(b1+b2+b4)+4=-1
b1,b2,b4はx^3+x^2-4x+1=0の3根
b1^2=b2+2b4+4=(b2+b4)+b4+4=-1-b1+b4+4=b4+3-b1
b1^2=b2+2b4+4=2(b2+b4)-b2+4=2(-1-b1)-b2+4=-b2+2-2b1
b1=(a+a^12)+(a^5+a^8)
c1=a+a^12,c2=a^5+a^8
c1c2=a^6+a^9+a^4+a^7=b4
c1,c2はx^2-b1x+b4=0の2根
x^2-b1x+b4=x^2-b1x+b1-3+b1^2=0
b2=(a^2+a^11)+(a^3+a^10)
c1=a^2+a^11,c2=a^3+a^10
c1c2=a^5+a^12+a+a^8=b4
c1,c2はx^2-b2x+b1=0の2根
b4=(a^4+a^9)+(a^6+a^7)
c1=a^4+a^9,c2=a^6+a^7
c1c2=a^10+a^11+a^2+a^3=b2
c1,c2はx^2-b4x+b2=0の2根
===================================
x=(y-1/3)とおく
(y-1/3)^3+(y-1/3)^2-4(y-1/3)+1=0
y^3-y^2+1/3・y-1/27+y^2-2/3・y+1/9-4y+4/3+1=0
y^3+(1/3-2/3-4)y-1/27+1/9+7/3=0
y^3+(-13/3)y+(-1+3+63)/27=0
y^3+(-13/3)y+65/27=0
===================================
3次方程式:x^3=px+qの解は
x=3√A+3√B
A=q/2+√((q/2)^2−(p/3)^3)
B=q/2−√((q/2)^2−(p/3)^3)
で与えられる.
===================================
p=13/3,q=-65/27
A=-65/54+{(65/54)^2-(13/9)^3}^1/2
B=-65/54-{(65/54)^2-(13/9)^3}^1/2
A=-65/54+{13^2・(5)^2/4/9^3-13^2・13/9^3}^1/2
B=-65/54-{13^2・(5)^2/4/9^3-13^2・13/9^3}^1/2
A=-65/54+13/9・{(5)^2/4/9-13/9}^1/2
B=-65/54-13/9・{(5)^2/4/9-13/9}^1/2
A=-65/54+13/9・{(25-52)/36}^1/2
B=-65/54-13/9・{(25-52)/36}^1/2
A=-65/54+13/18・{-3}^1/2
B=-65/54-13/18・{-3}^1/2
===================================
2000 '
2010 A=-65/54
2020 B=39/54*SQR(3)
2030 W0=0:W1=PI*2/3:W2=PI*4/3
2040 DIM W(10)
2050 '
2060 PFILE$="scrn:":'pfile$="b:12345.txt"
2070 OPEN PFILE$ FOR OUTPUT AS #1
2080 W(1)=W0:W(2)=W0:GOSUB *CALC3
2090 B2=Y
2100 '
2110 W(1)=W2:W(2)=W1:GOSUB *CALC3
2120 B1=Y
2130 '
2140 W(1)=W1:W(2)=W2:GOSUB *CALC3
2150 B4=Y
2160 '
2170 PRINT #1," "
2180 Y=(B1+SQR(B1*B1-4*B4))/2
2190 PRINT #1,Y,Y^2-B1*Y+B4, 2*COS(PI*2/13)
2200 Y=(B1-SQR(B1*B1-4*B4))/2
2210 PRINT #1,Y,Y^2-B1*Y+B4, 2*COS(PI*10/13)
2220 '
2230 PRINT #1," "
2240 Y=(B2+SQR(B2*B2-4*B1))/2
2250 PRINT #1,Y,Y^2-B2*Y+B1, 2*COS(PI*4/13)
2260 Y=(B2-SQR(B2*B2-4*B1))/2
2270 PRINT #1,Y,Y^2-B2*Y+B1, 2*COS(PI*6/13)
2280 '
2290 PRINT #1," "
2300 Y=(B4+SQR(B4*B4-4*B2))/2
2310 PRINT #1,Y,Y^2-B4*Y+B2, 2*COS(PI*8/13)
2320 Y=(B4-SQR(B4*B4-4*B2))/2
2330 PRINT #1,Y,Y^2-B4*Y+B2, 2*COS(PI*12/13)
2340 END
2350 '
2360 *CALC3:
2370 SS=0:TT=0
2380 REA=A:IMA=B :WA= PI/3:WZ=W(1):GOSUB *CALC4
2390 REA=A:IMA=-B :WA=-PI/3:WZ=W(2):GOSUB *CALC4
2400 Y=-1/3+SS
2410 PRINT #1," "
2420 PRINT #1,Y,Y^3+Y^2-4*Y+1
2430 RETURN
2440 '
2450 *CALC4:
2460 ZA=SQR(REA^2+IMA^2)
2470 TANA=IMA/REA
2480 TH=ATN(TANA)
2490 'PRINT COS(TH/3+WA)*ZA^(1/3)
2500 'PRINT SIN(TH/3+WA)*ZA^(1/3)
2510 REZ=COS(TH/3+WA+WZ)*ZA^(1/3)
2520 IMZ=SIN(TH/3+WA+WZ)*ZA^(1/3)
2530 'PRINT REZ
2540 SS=SS+REZ
2550 TT=TT+IMZ
2560 RETURN
1.3772 5.24521E-06
.273887 1.23978E-05
-2.65109 0
1.77091 0 1.77091
-1.49702 2.38419E-07 -1.49702
1.13614 -2.08616E-07 1.13613
.241069 2.98023E-08 .241076
-.709211 -1.19209E-07 -.709207
-1.94188 5.96046E-07 -1.94188
===================================