■正多角形の作図と原始根(その269)
[Q]cos2π/13+cos6π/13+cos18π/13=?
[Q]sin2π/13+sin6π/13+sin18π/13=?
===================================
最初に3群に分けると
b2=a^2+a^3+a^11+a^10
b4=a^4+a^6+a^9+a^7
b1=a^8+a^12+a^5+a
b2b4=a^6+a^8+a^11+a^9+a^7+a^9+a^12+a^10+a^2+a^4+a^7+a^5+a+a^3+a^6+a^4
=2b4+b1+b2
b4b1=a^12+a^3+a^9+a^5+a+a^5+a^11+a^7+a^4+a^8+a+a^10+a^2+a^6+a^12+a^8
=2b1+b2+b4
b1b2=a^10+a+a^7+a^3+a^11+a^2+a^8+a^4+a^6+a^10+a^3+a^12+a^5+a^9+a^2+a^11
=2b2+b1+b4
b2b4+b4b1+b1b2=4(b1+b2+b4)=-4
b2b4b1=2b4b1+b1^2+b1b2=4b1+2b2+2b4+b1^2+2b2+b1+b4=5b1+4b2+3b4+b1^2
b1^2=a^3+a^11+a^10+a^2+2a^7+2+2a^9+2a^4+2+2a^6
b1^2=b2+2a^7+2+2a^9+2a^4+2+2a^6=b2+2b4+4
b2b4b1=5b1+4b2+3b4+b2+2b4+4=5(b1+b2+b4)+4=-1
b1,b2,b4はx^3+x^2-4x+1=0の3根
b1^2=b2+2b4+4=(b2+b4)+b4+4=-1-b1+b4+4=b4+3-b1
b1^2=b2+2b4+4=2(b2+b4)-b2+4=2(-1-b1)-b2+4=-b2+2-2b1
b1=(a+a^12)+(a^5+a^8)
c1=a+a^12,c2=a^5+a^8
c1c2=a^6+a^9+a^4+a^7=b4
c1,c2はx^2-b1x+b4=0の2根
x^2-b1x+b4=x^2-b1x+b1-3+b1^2=0
b2=(a^2+a^11)+(a^3+a^10)
c1=a^2+a^11,c2=a^3+a^10
c1c2=a^5+a^12+a+a^8=b4
c1,c2はx^2-b2x+b1=0の2根
b4=(a^4+a^9)+(a^6+a^7)
c1=a^4+a^9,c2=a^6+a^7
c1c2=a^10+a^11+a^2+a^3=b2
c1,c2はx^2-b4x+b2=0の2根
===================================
x=(y-1/3)とおく
(y-1/3)^3+(y-1/3)^2-4(y-1/3)+1=0
y^3-y^2+1/3・y-1/27+y^2-2/3・y+1/9-4y+4/3+1=0
y^3+(1/3-2/3-4)y-1/27+1/9+7/3=0
y^3+(-13/3)y+(-1+3+63)/27=0
y^3+(-13/3)y+65/27=0
===================================
3次方程式:x^3=px+qの解は
x=3√A+3√B
A=q/2+√((q/2)^2−(p/3)^3)
B=q/2−√((q/2)^2−(p/3)^3)
で与えられる.
===================================
p=13/3,q=-65/27
A=-65/54+{(65/54)^2-(13/9)^3}^1/2
B=-65/54-{(65/54)^2-(13/9)^3}^1/2
A=-65/54+{13^2・(5)^2/4/9^3-13^2・13/9^3}^1/2
B=-65/54-{13^2・(5)^2/4/9^3-13^2・13/9^3}^1/2
A=-65/54+13/9・{(5)^2/4/9-13/9}^1/2
B=-65/54-13/9・{(5)^2/4/9-13/9}^1/2
A=-65/54+13/9・{(25-52)/36}^1/2
B=-65/54-13/9・{(25-52)/36}^1/2
A=-65/54+13/18・{-3}^1/2
B=-65/54-13/18・{-3}^1/2
===================================