■ラグランジュ・ルジャンドル・ラマヌジャン(その100)
【1】ラグランジュの定理(4平方和定理)
まず,簡単な数値実験から始めることにしましょう.1から10までの整数をいくつかの平方数の和の形式で表現するというものです.
整数の平方
0,1,4,9,16,25,・・・
は非常にまばらにしか存在しませんが,2つの平方数の和の形で表される整数はより頻繁に現れます.1,2,4,5,8,9,10,・・・
1=1^2+0^2
2=1^2+1^2
4=2^2+0^2
5=2^2+1^2
8=2^2+2^2
9=3^2+0^2
10=3^2+1^2
ここで,3,6,7といった整数は,2つの平方の和では書けないことがわかります.しかし,3つの平方和となると幾分間隙を埋めてくれます.
3=1^2+1^2+1^2
6=2^2+1^2+1^2
それでも,なおすべての正の整数を得ることはできません.最後まで残った7に対しては3つの平方数の和で書けず,4つの平方数が必要となります.
7=2^2+1^2+1^2+1^2
===================================
このような数値実験からいくつかのことが予想され,肯定的に証明されています.
[1]フェルマー・オイラーの定理(2平方和定理)
特別な素数である2を除外して,素数は4で割ると余りが1になるもの(5,13,17,29,37,41,・・・)と3になるもの(3,7,11,19,23,31,・・・)の2種類に分けられます.
このうち,4n+1の形の素数は2つの整数の平方の和として表されます.たとえば,5=1^2+2^2,13=2^2+3^2,17=1^2+4^2,29=2^2+5^2
しかし,4n+3の形の素数は1つもこのようには表せないのです.この定理はフェルマーの定理と呼ばれ,フェルマーは無限降下法でこれを証明しましたが,その証明は不十分で,100年後のオイラーによって完全な証明がなされています.
[2]ルジャンドルの定理(3平方和定理)
4n+3の形の数は2個の平方数の和で表せませんが,同様にして,
「8n+7の形の数は3個の平方数の和では表されない.」
ルジャンドルは,2次形式ax^2+by^2+cz^2の研究を通して,この結果を得ています.
===================================
[3]ラグランジュの定理(4平方和定理)
また,前述の数値実験から「すべての正の整数は,g個の平方数の和として表すことができるだろうか? さらに,gの最小値はいくつであろうか?」というより高度な問題が派生します.
「すべての正の整数は4個の整数の平方和で表される」
というのが,ラグランジュの定理なのですが,驚くべきことに,7のみならず任意の自然数はたった4つの平方数の和の形に表せるのです.
7=2^2+1^2+1^2+1^2
2=1^2+1^2+0^2+0^2
このことを,シンボリックに書くと
n=□+□+□+□
となります.□は平方数の意味です.
オイラーはこの定理の直前まで行きながら,最後の段階で成功しませんでした.ラグランジュはオイラーの研究成果からアイデアを得て,1772年,最後の段階を突破したのですが,その証明中で用いられる基本公式が
x=ap+bq+cr+ds,
y=aq−bp+cs−dr,
z=ar−bs−cp+dq,
w=as+br−cq−dp
とおくと
(a^2+b^2+c^2+d^2)(p^2+q^2+r^2+s^2)=x^2+y^2+z^2+w^2
が成り立つというもので,1748年にオイラーによって証明されています.
この基本公式はハミルトンの4元数(1843年)を使ったうまい方法でも証明されますが,それにしても,オイラーはどのようにして発見したのでしょう? なお,四元数は複素数に似ていますが,ただ1つではなく3つの虚数をもつ数体系で,i^2=−1,j^2=−1,k^2=−1,ij=k,jk=i,ki=j,ji=−k,kj=−i,ik=−jなる性質をもち,
(x+yi+zj+wk)(x−yi−zj−wk)=x^2+y^2+z^2+w^2
となります.
上に掲げた基本公式は,4つの平方数の和となっている数は積の演算で閉じていること,すなわち,n1が4つの平方数の和ならば,n1n2もそうであることを示しています.これにより,ラグランジュの定理を証明するには,すべての素数pが4つの平方数の和であるということの証明に帰着されることになります.また,
2=1^2+1^2+0^2+0^2
ですから,pは素数と仮定してもよいわけです.すべての奇素数pが4つの平方数の和であることの証明も,背理法の1種である無限降下法によって証明できるのです.
===================================