¡—ÊŽq‰»‚ƃ‰ƒ}ƒkƒWƒƒƒ“‚̘ai‚»‚Ì‚P‚Vj

x/(expx-1)=ƒ°Bnx^n/n!

B0=1

ƒ°(n+1,k)Bk=0

B0=1,B1=-1/2, B2n+1=0

B2=-16,B4=-1/30,B6=1/42,B8=-1/30,B10=5/66,B12=-691/2730,B14=7/6,EEE

x/(expx-1)=-x/2+ƒ°B2nx^2n/(2n)!

xcotx=ƒ°(-1)^nB2n(2x)^2n/(2n)!

ƒ°(2n+1,2k)2^2kB2k=2n+1

tanx=cotx-2cot2x

1/sinx=cot(x/2)-cot(x)‚æ‚è

xtanx=ƒ°(1-2^2n)(-1)^nB2n(2x)^2n/(2n)!

ƒ°(2n,2k)2^2k(1-2^2k)B2k=-2m

x/sinx=1+2ƒ°(1-2^2n-1)(-1)^nB2nx^2n/(2n)!

x/(expx+1)=x/2+ƒ°(1-2^2n)B2nx^2n/(2n)!

xcotx=1-2ƒ°ƒÄ(2n)x^2n/ƒÎ^2n

ƒÄ(2n)=1/2E(2ƒÎ)^2n/(2n)!E(-1)^n-1B2n