■特殊値(その10)
【4】楕円モジュラー関数
ここでは重さkの保型形式について説明しておきますが,SL(2,Z)群上,最も単純な(基本的・古典的)保型形式は重さkのアイゼンシュタイン級数
Ek=1/2Σ1/(mz+n)^k
m,nは互いに素,kは整数4,6,8,・・・(4以上の偶数)
です.すなわち,アイゼンシュタイン級数は変換公式
Ek(az+b/cz+d)=(cz+d)^kEk(z)
c,dは互いに素
を満たすというわけです.
k>2はこの級数を収束させるために,kが偶数であることは0にさせないために必要な条件です.そして,保型性の定義から
Ek(z+1)=Ek(z)
Ek(-1/z)=z^kEk(z)
はすぐわかりますが,前者は周期性,後者は双対性と理解することができます.
Ek(z+1)=Ek(z) (周期性)
Ek(-1/z)=z^kEk(z) (双対性)
この保型性の定義は周期性f(x+1)=f(x)を含むので,任意の保型形式はq=exp(2πiz)とするフーリエ展開のもち,
E4(z)=1+240Σσ3(n)q^n
E6(z)=1−504Σσ5(n)q^n
E8(z)=1+480Σσ7(n)q^n
E10(z)=1−264Σσ9(n)q^n
E12(z)=1+65520/691Σσ11(n)q^n
E14(z)=1−24Σσ13(n)q^n
・・・・・・・・・・・・・・・・
σk(n)はnの正の約数のk乗和
ベルヌーイ数を用いると
Ek(z)=1−2k/BkΣσk-1(n)q^n
また,ζ(1-k)=−Bk/kにより
Ek(z)=1−2/ζ(1-k)Σσk-1(n)q^n
とも表されます.これらはすべてのσk(n)を教えてくれる母関数であり,それが保型性を示しているという事実が,モジュラー関数は深淵といわれる所以です.
η(z)をデデキントのイータ関数とすると,重さ12の判別関数
Δ(z)=η(z)^24=qΠ(1-q^n)^24=Στ(n)q^n
=q-24q^2+252q^3-1472q^4+5483q^5+・・・
は重さ4,重さ6のアイゼンシュタイン級数を用いて
Δ(z)=1/1728(E4(z)^3-E6(z)^2)
と表されます.また,ラマヌジャンのτ関数:τ(n)はnに関して乗法的という驚くべき性質をもっています.たとえば,τ(6)=-6048=τ(2)τ(3).
19世紀の後半,デデキントとクラインは独立に重さ0の保型関数
j(az+b/cz+d)=j(z)
を構成しました.j(z)は最も簡単でよく知られているSL(2,Z)不変な保型関数で,q=exp(2πiz)とおくと,
j(z)=E4(z)^3/Δ(z)
=1/q+744+196884q+21493760q^2+864299970q^3+・・・
と展開されます.j(z)は楕円モジュラー関数またはj関数と称されています.
===================================