■学会にて(京大数理解析研,その251)

種村先生の講演のなかで菱形6面体A6/O6が紹介されました。

これらはヒンギス先生手製のRhomboとしてすでに商品化がなされていますが、中部大学の糸健太郎先生が自作の紙製の模型を提示されました。

ヒンギス先生のRhomboよりも接着がよく、性能の高さが感じられる模型でした。

それはA6/O6の内部の6面に「筒に入った棒状のネオジウム磁石を付けたもの」で、この棒状磁石はマグネ???という多面体模型に使われているそうです。【1】

===================================

【1】菱形多面体

 合同な菱形だけでできている多面体について考えます.どのような菱形でも平行6面体を作ることができるのですが,この菱面体には2種類(太った菱面体とやせた菱面体)あって,細めで尖ったほうがacute(扁長菱面体),太めで平たいほうがobtuse(扁平菱面体)と呼ばれています.

 ケプラーは複合多面体から菱形十二面体,菱形三十面体を発見し,すべての面が合同な菱形である菱形多面体は,菱形十二面体と対角線の比が黄金比になっている菱形を30個組み合わせてできる菱形三十面体以外にはないことを証明しようとしました.

 菱形十二面体,菱形三十面体は球に内接する(外接球をもつ)のですが,球には内接しないものの合同な菱形だけでできている多面体には,2種類の菱形六面体を除いて実はあと2つ,1885年にフェドロフが発見した菱形二十面体と1960年にビリンスキーが発見した菱形十二面体(第2種)があります.

 菱形三十面体からあるゾーン(菱形の連なった帯)を抜き取って押しつぶすと菱形二十面体,菱形二十面体からあるゾーンを抜くと菱形十二面体(第2種)になるので,これらは各面の対角線の長さの比が黄金比の菱形からなる一連のゾーン多面体と考えることができます.

 各面の菱形の対角線の長さの比が黄金比1:1.618[=(√5+1)/2]の黄金六面体の場合,2つずつacute とobtuse が集まれば菱形十二面体(第2種),5つずつ集まれば菱形二十面体,10個ずつ集まれば菱形三十面体となります.このうち,菱形二十面体と菱形三十面体は5重の対称軸をもっています.

 2種類の黄金菱面体を用いて,3次元を隙間なく埋める非周期的構造を作ることができるのですが,ペンローズのタイル貼りは,三次元空間を2種類の黄金菱面体で非周期的に埋めつくしたときの平面への投影図であり,5回対称性という物質の新しい状態を2次元的に模似したものになっています.

===================================