■学会にて(京大数理解析研,その229)
今回のコラムでは
コラム「無理数・代数的数・超越数(その10)」
コラム「ビリヤード問題(その2)」
を再編して,無理数の性質に関するワイルの一様分布定理を紹介する.
ワイルの一様分布定理とは,無理数γを与えたとき,nγの非整数部分{nγ},n^2γの非整数部分{n^2γ}のn=1,2,3,・・・としたときの分布についての定理で,
[1]γが無理数であれば{nγ}は区間[0,1)において一様分布する
[2]γが無理数であれば{n^2γ}は区間[0,1)で一様分布する
クロネッカーの稠密定理とそれに密接に関連したワイルの一様分布定理により,長方形ビリヤード問題に幾何学的証明を与えることができる.
===================================
【1】ディリクレの定理の証明
ディリクレの定理,すなわち「任意の実数αについて
|α−an/bn|<1/bn^2
を満たす有理数an/bnが存在する.」の証明を再度掲げることにする.
(証)αが有理数で,α=p/qと表されたとする.{bn}は次々に大きくなる整数列であるから,q<bnである番号をとると
|α−an/bn|=|p/q−an/bn|=|pbn−qan|/qbn
しかし,an/bnはαとは一致しないので分子は1以上.したがって
|α−an/bn|≧1/qbn
であるが,これが<1/bn^2なのでq>bnとなり矛盾.すなわち,αは有理数ではあり得ないことになる.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
このように,「ディリクレの定理」の証明は,引き出し論法あるいは鳩の巣原理と呼ばれるものから容易に導かれる.この原理はn個の巣箱にn+1羽の鳩が入っているならば,ある巣箱には少なくとも2羽の鳩が入っていなければならないというものである.
xの小数部分x−[x]を{x}と書くことにすると,0≦{x}<1である.ここでq+1個の数,0,1,{α},{2α},・・・,{(q−1)α}を考えると,これらの数はすべて区間[0,1]に属する.
区間[0,1]をq個の互いに交わらないながさ1/qの小区間に分割すれば,q+1個の数のうちの2個は同じ小区間に入ることになる.その2数の差はbnα−anで,また,0<bn<qであるから,|bnα−an|≦1/qが成り立つ.
===================================