■学会にて(京大数理解析研,その199)

正四面体を柱状に積み重ねた構造物:BCHもデルタ多面体の仲間としてよいだろう。

そのねじれ角は cosθ=−2/3,θ=arccos(−2/3)であるが,

 θ=π+arctan((1−c^2)/c)=π+arctan(−√5/2)=131.81°

 また,

 2arctan(√5)=π+arctan(−√5/2)=131.81°

で,正四面体立体らせんのねじれ角は無理数であるため,連結数を無限に増やしても投影図上頂点が重なることはない.

===================================

 同じ大きさの正多面体同士を面と面で接合して,立体環を作ってみる.立方体では8個で環を作ることができる.

 正八面体でも8個で環を作ることができる.正12面体と正20面体も8個で環を作ることができる.

[Q]正四面体でも環を作ることができるだろうか?  (スタインハウス,1957年)

[A]不可能.  (シフィエルチェフスキ,1958年)

 しかし,完全な正多面体でなく,1辺の長さを1/500だけ伸ばすと(1→1.00274),48個で環を作ることができるという.

===================================