■ある恒等式(その14)

1/p^3q^3=1/(p+q)^3・(1/p^3+1/q^3) +3/(p+q)^4・(1/p^2+1/q^2) +6/(p+q)^5 ・(1/p+1/q)

===================================

pで微分すると

-3/p^4q^3=-3/(p+q)^4・(1/p^3+1/q^3) +1/(p+q)^3・(-3/p^4)-12/(p+q)^5・(1/p^2+1/q^2)+3/(p+q)^4・(-2/p^3) -30/(p+q)^6 ・(1/p+1/q)+6/(p+q)^5 ・(-1/p^2)

-3/p^4q^3=1/(p+q)^4・(-3/p^3-3/q^3) +1/(p+q)^3・(-3/p^4)+1/(p+q)^5・(-12/p^2-12/q^2)+1/(p+q)^4・(-6/p^3) +1/(p+q)^6 ・(-30/p-30/q)+1/(p+q)^5 ・(-6/p^2)

-3/p^4q^3=1/(p+q)^4・(-9/p^3-3/q^3) +1/(p+q)^3・(-3/p^4)+1/(p+q)^5・(-18/p^2-12/q^2) +1/(p+q)^6 ・(-30/p-30/q)

qで微分すると

9/p^4q^4=-4/(p+q)^5・(-9/p^3-3/q^3) +1/(p+q)^4・(9/q^4)-3/(p+q)^4・(-3/p^4)-5/(p+q)^6・(-18/p^2-12/q^2) +1/(p+q)^5・(24/q^3)-6/(p+q)^7 ・(-30/p-30/q)+1/(p+q)^6 ・(30/q^2)

9/p^4q^4=1/(p+q)^5・(36/p^3+12/q^3) +1/(p+q)^4・(9/q^4)+1/(p+q)^4・(9/p^4)+1/(p+q)^6・(90/p^2+60/q^2) +1/(p+q)^5・(24/q^3)+1/(p+q)^7 ・(180/p+180/q)+1/(p+q)^6 ・(30/q^2)

9/p^4q^4=1/(p+q)^5・(36/p^3+36/q^3) +1/(p+q)^4・(9/p^4+9/q^4)+1/(p+q)^6・(90/p^2+90/q^2) +1/(p+q)^7 ・(180/p+180/q)

1/p^4q^4=1/(p+q)^5・(4/p^3+4/q^3) +1/(p+q)^4・(1/p^4+1/q^4)+1/(p+q)^6・(10/p^2+10/q^2) +1/(p+q)^7 ・(20/p+20/q)

1/p^4q^4=1/(p+q)^4・(1/p^4+1/q^4)+4/(p+q)^5・(1/p^3+1/q^3) +10/(p+q)^6・(1/p^2+1/q^2) +20/(p+q)^7 ・(1/p+1/q)

期待に反し、1,4,10,20であった。

===================================

検算

20/(p+q)^7・(p+q)/pq +10(p+q)/(p+q)^7・(p^2+q^2)/p^2q^2 +4(p+q)^2/(p+q)^7 ・(p^3+q3)/p^3q^3+(p+q)^3/(p+q)^7・(p^4+q^4)/p^4q^4

20/(p+q)^7・p^3q^3(p+q)/p^4q^4 +10p^2q^2(p+q)/(p+q)^7・(p^2+q^2)/p^4q^4 +4pq(p+q)^2/(p+q)^7 ・(p^3+q3)/p^4q^4+(p+q)^3/(p+q)^7・(p^4+q^4)/p^4q^4

20p^3q^3+10p^2q^2(p^2+q^2)+4pq(p+q)・(p^3+q^3)+(p+q)^2(p^4+q^4)=(p+q)^6になればよい

20p^3q^3+10p^4q^2+10p^2q^4+4(p^2q+pq^2)・(p^3+q^3)+(p^2+2pq+q^2)・(p^4+q^4)

20p^3q^3+10p^4q^2+10p^2q^4+4p^5q+4p^4q^2+4p^2q^4+4pq^5+p^6+2p^5q+p^4q^2+p^2q^4+2pq^5+q^6

p^6+6p^5q+15p^4q^2+20p^3q^3+15p^2q^4+6pq^5+q^6=(p+q)^6

===================================